# ANALYTICAL METHOD VERIFICATION FOR THE DETERMINATION OF WATER SOLUBLE COMPONENTS OF PETROLEUM COKE IN FRESHWATER USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472C-104

#### **GUIDELINE**:

European Commission Working Document SANCO/3029/99 rev.4

#### **AUTHORS**:

STUDY INITIATION DATE: April 28, 2004

STUDY COMPLETION DATE: February 1, 2006

AMENDED REPORT DATE: April 10, 2007

Submitted to

American Petroleum Institute 1220 L Street, N.W. Washington, DC 20005

# Wildlife International, Ltd.

8598 Commerce Drive Easton, Maryland 21601 (410) 822-8600

Page 1 of 163

#### GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

SPONSOR: Ame

American Petroleum Institute

TITLE:

Analytical Method Verification for the Determination of Water Soluble Components of

Petroleum Coke in Freshwater Using High Performance Liquid Chromatography

(HPLC)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472C-104

STUDY COMPLETION: February 1, 2006

AMENDED REPORT DATE: April 10, 2007

This study was conducted in compliance with Good Laboratory Practice Standards as published by the U.S. Environmental Protection Agency in 40 CFR Parts 160 and 792, 17 August 1989 and OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98) 17), with the following exceptions:

Periodic analyses of well water for potential contaminants were performed using a certified laboratory and standard U.S. EPA analytical methods, but not under Good Laboratory Practice Standards.

The characterization of the test substance was not determined in accordance with Good Laboratory Practice Standards.

The stability of the test substance under storage conditions at the test site was not determined in accordance with Good Laboratory Practice Standards.

### STUDY DIRECTOR:

DATE

Wildlife International, Ltd.

**SPONSOR:** 

American Petroleum Institute, by:

4/26/2007 DATE

### QUALITY ASSURANCE STATEMENT

This study was examined for compliance with Good Laboratory Practice Standards as published by the U.S. Environmental Protection Agency in 40 CFR Parts 160 and 792, 17 August 1989 and OECD Principles of Good Laboratory Practice, (ENV/MC/CHEM (98) 17). The dates of all inspections and audits and the dates that any findings were reported to the Study Director and Laboratory Management were as follows:

|                               |                                 | DATE REP           | ORTED TO:          |
|-------------------------------|---------------------------------|--------------------|--------------------|
| ACTIVITY:                     | DATE CONDUCTED:                 | STUDY DIRECTOR:    | MANAGEMENT:        |
| Protocol                      | April 22, 2004                  | April 22, 2004     | December 13, 2004  |
| Matrix Fortification          | September 17, 2004              | September 17, 2004 | September 27, 2004 |
| Test Substance<br>Preparation | October 29, 2004                | October 29, 2004   | November 9, 2004   |
| Data and Draft Report         | December 2, 3, 6, 7 and 8, 2004 | December 8, 2004   | December 17, 2004  |
| Final Report                  | February 1, 2006                | February 1, 2006   | February 1, 2006   |
| Amended Report                | April 9, 2007                   | April 9, 2007      | April 9, 2007      |

All inspections were study-based unless otherwise noted.



- 4 -

### AMENDED REPORT APPROVAL

SPONSOR: American Petroleum Institute

TITLE: Analytical Method Verification for the Determination of Water Soluble Components of

Petroleum Coke in Freshwater Using High Performance Liquid Chromatography (HPLC)

WILDLIFE INTERNATIONAL, LTD. PROJECT NO.: 472C-104

This report was reviewed by the individuals involved in the conduct and management of the study, and was found to be an accurate reflection of the methods used, data collected and results of the study.

### STUDY DIRECTOR:

Wildlife International, Ltd.

Wildlife International, Ltd.

MANAGEMENT:

Alight
DATE

**AMENDED** 

### **TABLE OF CONTENTS**

| Title/Cover Page                                     | 1  |
|------------------------------------------------------|----|
| Good Laboratory Practice Compliance Statement        | 2  |
| Quality Assurance Statement                          | 3  |
| Report Approval                                      | 4  |
| Table of Contents                                    | 5  |
| Summary                                              | 12 |
| Introduction                                         | 14 |
| Purpose                                              | 14 |
| Experimental Design                                  | 14 |
| Materials and Methods                                | 15 |
| Test Substance                                       | 15 |
| Reference Standards                                  | 15 |
| Reagents and Solvents                                | 16 |
| Freshwater                                           |    |
| Stocks Preparation by HPLC Analysis                  |    |
| Analytical Method by HPLC                            |    |
| Calibration Curve and Limit of Quantitation (LOQ)    |    |
| Reagent and Matrix Blank Samples                     |    |
| Freshwater Method Verification Samples               |    |
| Example Calculations                                 |    |
| Preparation of Test Concentrations for the WAF Trial |    |
| Results of WAF Equilibration Trial                   | 20 |
| Conclusions                                          | 20 |
| References                                           | 22 |

### **TABLES**

| Table 1 - Typical HPLC Operational Parameters                                                                               | 23 |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| Table 2 - Method Verification Recoveries of Naphthalene in Freshwater Analyzed by HPLC/UV2                                  | 24 |
| Table 3 - Method Verification Recoveries of Acenaphthylene in Freshwater Analyzed by HPLC/UV                                | 25 |
| Table 4 - Method Verification Recoveries of 1-Methylnaphthalene in Freshwater Analyzed by HPLC/UV                           | 26 |
| Table 5 - Method Verification Recoveries of 2-Methylnaphthalene in Freshwater Analyzed by HPLC/UV                           | 27 |
| Table 6 - Method Verification Recoveries of Fluorene in Freshwater Analyzed by HPLC/UV                                      | 28 |
| Table 7 - Method Verification Recoveries of Acenaphthene in Freshwater Analyzed by HPLC/UV.                                 | 29 |
| Table 8 - Method Verification Recoveries of Phenanthrene in Freshwater Analyzed by HPLC/UV3                                 | 30 |
| Table 9 - Method Verification Recoveries of Anthracene in Freshwater Analyzed by HPLC/UV                                    | 31 |
| Table 10 - Method Verification Recoveries of Fluoranthene in Freshwater Analyzed by HPLC/UV.                                | 32 |
| Table 11 - Method Verification Recoveries of Pyrene in Freshwater Analyzed by HPLC/UV                                       | 33 |
| Table 12 - Method Verification Recoveries of Chrysene in Freshwater Analyzed by HPLC/UV                                     | 34 |
| Table 13 - Method Verification Recoveries of Benz(a)anthracene in Freshwater Analyzed by HPLC with Fluorescence Detection   | 35 |
| Table 14 - Method Verification Recoveries of Benzo(b)fluoranthene in Freshwater Analyzed by HPL with Fluorescence Detection |    |
| Table 15 - Method Verification Recoveries of Benzo(k)fluroanthene in Freshwater Analyzed by HPL with Fluorescence Detection |    |
| Table 16 - Method Verification Recoveries of Benzo(a)pyrene in Freshwater Analyzed by HPLC with Fluorescence Detection      | 38 |

| Table 17 - Method Verification Recoveries of Dibenz(a,h)anthracene in Freshwater Analyzed by HPLC with Fluorescence Detection                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 18 - Method Verification Recoveries of Indeno(1,2,3-cd)pyrene in Freshwater Analyzed by HPLC with Fluorescence Detection                                                                           |
| Table 19 - Method Verification Recoveries of Benzo(g,h,i)perylene Freshwater Analyzed by HPLC with Fluorescence Detection                                                                                |
| Table 20 - Method Verification Recoveries of Dibenzo(a,e)pyrene in Freshwater Analyzed by HPLC with Fluorescence Detection                                                                               |
| Table 21 - Matrix Blanks, Matrix Fortifications and Measured Concentrations of Naphthalene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV         |
| Table 22 - Matrix Blanks, Matrix Fortifications and Measured Concentrations of Acenaphthylene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV      |
| Table 23 - Matrix Blanks, Matrix Fortifications and Measured Concentrations of 1-Methylnaphthalene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV |
| Table 24 - Matrix Blanks, Matrix Fortifications and Measured Concentrations of 2-Methylnaphthalene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV |
| Table 25 - Matrix Blanks, Matrix Fortifications and Measured Concentrations of Fluorene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV            |
| Table 26 - Matrix Blanks, Matrix Fortifications and Measured Concentrations of Acenaphthene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV        |
| Table 27 - Matrix Blanks, Matrix Fortifications and Measured Concentrations of Phenanthrene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV        |

| Table 28 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Anthracene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 29 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Fluoranthene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection          |
| Table 30 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Pyrene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection                |
| Table 31 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Chrysene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV                             |
| Table 32 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benz(a)anthracene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection     |
| Table 33 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(b)fluoranthme in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection   |
| Table 34 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(k)fluoranthme in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection   |
| Table 35 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(a)pyrene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection        |
| Table 36 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Dibenz(a,h)anthracene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection |
| Table 37 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Indeno(1,2,3-cd)pyrene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial                                   |

| Table 38 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(g,h,i)perylene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection | 60   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 39 - | Matrix Blanks, Matrix Fortifications and Measured Concentrations of Dibenzo(a,e)pyrene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by Fluorescence Detection   | 61   |
|            | FIGURES                                                                                                                                                                                                       |      |
| Figure 1 - | Analytical method flowchart for the analysis of PAH components in freshwater analyzed by HPLC                                                                                                                 | 62   |
| Figure 2 - | Calibration curve for Naphthalene analyzed by HPLC/UV                                                                                                                                                         | 63   |
| Figure 3 - | Calibration curve for Acenaphthylene analyzed by HPLC/UV                                                                                                                                                      | 64   |
| Figure 4 - | Calibration curve for 1-Methylnaphthalene analyzed by HPLC/UV                                                                                                                                                 | 65   |
| Figure 5 - | Calibration curve for 2-Methylnaphthalene analyzed by HPLC/UV                                                                                                                                                 | 66   |
| Figure 6 - | Calibration curve for Fluorene analyzed by HPLC/UV                                                                                                                                                            | 67   |
| Figure 7 - | Calibration curve for Acenaphthene analyzed by HPLC/UV                                                                                                                                                        | 68   |
| Figure 8 - | Calibration curve for Phenanthrene analyzed by HPLC/UV                                                                                                                                                        | 69   |
| Figure 9 - | Calibration curve for Anthracene analyzed by HPLC/UV                                                                                                                                                          | 70   |
| Figure 10  | Calibration curve for Fluoranthene analyzed by HPLC with fluorescence detection                                                                                                                               | 71   |
| Figure 11  | Calibration curve for Pyrene analyzed by HPLC with fluorescence detection                                                                                                                                     | 72   |
| Figure 12  | · Calibration curve for Chrysene analyzed by HPLC/UV                                                                                                                                                          | 73   |
| Figure 13  | Calibration curve for Benz(a)anthracene analyzed by HPLC with fluorescence detecti                                                                                                                            | on74 |
| Figure 14  | Calibration curve for Benzo(b)fluoranthene analyzed by HPLC with fluorescence detection                                                                                                                       | 75   |
| Figure 15  | Calibration curve for Benzo(k)fluoroanthene analyzed by HPLC with                                                                                                                                             | 76   |

| Figure 16 - Calibration curve for Benzo(a)pyrene analyzed by HPLC with fluorescence detection 77                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 17 - Calibration curve for Dibenz(a,h)anthracene analyzed by HPLC with fluorescence detection                                                                                     |
| Figure 18 - Calibration curve for Indeno(1,2,3-cd)pyrene analyzed by HPLC/UV79                                                                                                           |
| Figure 19 - Calibration curve for Benzo(g,h,i)perylene analyzed by HPLC with fluorescence detection                                                                                      |
| Figure 20 - Calibration curve for Dibenzo(a,e)pyrene analyzed by HPLC with fluorescence detection                                                                                        |
| Figure 21 - Representative chromatograms of a low-level (5.00 $\mu$ g/L) calibration standard analyzed analyzed by HPLC/UV and fluorescence detection                                    |
| Figure 22 - Representative chromatograms of a high-level (50.0 $\mu g/L$ ) calibration standard analyzed analyzed by HPLC/UV and fluorescence detection                                  |
| Figure 23 - Representative chromatograms of a reagent blank, 472C-104-VREB-3 analyzed analyzed by HPLC/UV and fluorescence detection                                                     |
| Figure 24 - Representative chromatograms of a matrix blank, 472C-104-VMAB-3 analyzed analyzed by HPLC/UV and fluorescence detection                                                      |
| Figure 25 - Representative chromatograms of a low-level matrix fortification, 472C-104-VMAS-16 (10.0 $\mu$ g/L, nominal concentration) analyzed by HPLC/UV and fluorescence detection 86 |
| Figure 26 - Representative chromatograms of a high-level matrix fortification, 472C-104-VMAS-26 (100 $$ µg/L, nominal concentration) analyzed by HPLC/UV and fluorescence detection . 87 |
| Figure 27 -Representative chromatograms for the WAF trial of a low-level (5.00 $\mu$ g/L) calibration standard analyzed by HPLC/UV and fluorescence detection                            |
| Figure 28 -Representative chromatograms for the WAF trial of a high-level (50.0 $\mu$ g/L) calibration standard analyzed by HPLC/UV and fluorescence detection                           |
| Figure 29 -Representative chromatograms for the WAF trial of a matrix blank, 472C-104-MAB-1, analyzed by HPLC/UV and fluorescence detection                                              |

- 11 -

| 472C-104-M            | epresentative chromatograms for the WAF trial of a matrix fortification, AS-1 (10.0 μg/L nominal concentration), analyzed by HPLC/UV and fluorescence detection | 01  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                       |                                                                                                                                                                 |     |
| -                     | epresentative chromatograms for the WAF trial of a test sample, 472C-104-MAB-2,                                                                                 |     |
| (1000000 fluorescence | μg/L nominal concentration) analyzed by HPLC/UV and detection                                                                                                   | 92  |
| ndorescence           | detection                                                                                                                                                       | , _ |
|                       | APPENDICES                                                                                                                                                      |     |
| Appendix 1            | Specific Conductance, Hardness, Alkalinity and pH of Well Water Measured Durin<br>The 4-Week Period Immediately Preceding the Verification Test                 |     |
| Appendix 2            | Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water.                                                                         | 94  |
|                       | international, Etc. Well Water                                                                                                                                  | J¬  |
| Appendix 3            | Protocol and Protocol Amendments                                                                                                                                | 96  |
| Appendix 4            | Test Article Selection                                                                                                                                          | 114 |
|                       | Certificates of Analysis                                                                                                                                        |     |
|                       | Chevron Metals Analyses                                                                                                                                         |     |
|                       | Lancaster Laboratory PAH Analyses                                                                                                                               |     |
|                       | Aveka, Inc. Milled Particle Size Analysis                                                                                                                       | 154 |
| Appendix 5            | Personnel Involved in the Study                                                                                                                                 | 161 |
| Appendix 6            | Report Amendment                                                                                                                                                | 162 |

- 12 -

#### **SUMMARY**

SPONSOR: American Petroleum Institute

SPONSOR'S REPRESENTATIVE:

LOCATION OF STUDY, RAW DATA AND A COPY OF THE FINAL

REPORT:

Wildlife International, Ltd. Easton, Maryland 21601

WILDLIFE INTERNATIONAL, LTD.

PROJECT NUMBER: 472C-104

TEST SUBSTANCE: Petroleum Coke

STUDY: Analytical Method Verification for the Determination of Water

Soluble Components of Petroleum Coke in Freshwater Using High

Performance Liquid Chromatography (HPLC)

FORTIFIED TEST  $10.0, 40.0 \text{ and } 100 \mu\text{g/L}$ 

CONCENTRATIONS:

TEST DATES: Experimental Start (OECD) – August 4, 2004

Experimental Start (EPA) – September 20, 2004

Experimental Termination – November 5, 2004.

TEST SYSTEM: Freshwater

- 13 -

#### **SUMMARY**

(Continued)

SUMMARY:

Method verification samples containing nineteen polyaromatic hydrocarbons (PAHs) were fortified in freshwater. Sam ples were either further diluted in freshwater or analyzed directly against PAH external standards also prepared in freshwater. Recovery samples and standards were analyzed by reverse phase, gradient elution high performance liquid chrom atography with on-line sequential UV and fluorescence detection. Ultraviolet detection at 220 nm was used to quantify acenaphthylene, 1-methylnaphthalene, 2-methylnaphthalene, fluorene, acenaphthene, phenanthrene, chrysene and indeno(1,2,3-cd)py rene. Fluorescence detection at an excitation wavelength of 340 nm and an emission wavelength of 425 nm was used to quantify anthracene, fluoranthene, pyrene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene and dibenzo(a,e)pyrene. Each analyte was quantified against external standards via linear regression analysis. Recoveries of each of the PAH analy tes from freshwater are presented in tables 2-20. Linear regression analy ses of each of PAH analy tes are presented in figures 2-20.

Water accommodated fractions (WAFs) were analyzed for the presence of PAHs after mixing for 24, 48, 72 and 96 hours. No PAHs were detected in any WAF samples. A blank and three quality control (QC) sam ples were prepared and analyzed at each interval. All QC samples were quantitative for the nineteen PAHs; see tables 21-39.

#### **INTRODUCTION**

Analytical trials were conducted to verify analytical m ethods for the determ ination of polyaromatic hy drocarbons (PAH) in water accom modated fraction (WAF) solutions m ade with petroleum coke and freshwater. The study was conducted by Wildlife International, Ltd. and identified as Project Number 472C-104. The study was performed based on procedures in *Residues: Guidance for Generating and Reporting Methods of Analysis in Support of Pre-registration Data Requirements for Annex II (Part A, Section 4) and Annex III (Part A, Section 5) of Directive 91/414 (1).* Petroleum coke was defined as the product form ed by subjecting the heavy tar-like residue rem aining following oil refining to high temperatures and pressures. It consists of primarily elemental carbon with considerably smaller amounts of hydrocarbons, sulfur and trace amounts of heavy metals. The method was verified by fortifying freshwater with the test substance and recoveries were determined. Limits of quantitation (LOQ) for the method also were established. All raw data generated by Wildlife International, Ltd. and a copy of the final report are filed under Project Num ber 472C-104 in archives located on the Wildlife International, Ltd. site. The protocol and amendments are presented in Appendix 3 and personnel involved in the study are listed in Appendix 5.

#### **PURPOSE**

The objectives of this study were to; 1) verify a High Perform ance Liquid Chrom atography (HPLC) method for determination of polycyclic aromatic hydrocarbons (PAH) in water accommodated fraction (WAF) solutions of petroleum coke; 2) employ the method to determine the optimum WAF mixing time to achieve maximum leaching of PAHs from the test substance matrix into freshwater.

#### **EXPERIMENTAL DESIGN**

Wildlife International, Ltd. well water was fortified at three different concentrations and analyzed using HPLC methods developed by Wildlife International, Ltd. Reagent and matrix blanks were analyzed concurrently to evaluate potential analy tical in terferences. Calibration curves were prepared and analyzed with each series of matrix fortification samples.

An equilibration trial was run for 96 hoursto determine an appropriate mixing time for preparing WAF solutions of green petroleum coke. Com pounds of interest in WAF solutions were 20 PAHs. Analytical samples were taken approximately 24, 48, 72 and 96 hours after initiation of stirring and analyzed for PAHs. Matrix blanks were analy zed concurrently to evaluate potential analytical interferences. Calibration curves were prepared and analyzed with each series of matrix fortification samples.

#### **MATERIALS AND METHODS**

#### **Test Substance**

The test substance was green petroleumcoke (CAS Number 64741-79-3). Petroleum coke was defined as the product formed by subjecting the heavy tar-like residue remaining following oil refining to high temperatures and pressures. It consists of pr imarily elemental carbon with considerably smaller amounts of hydrocarbons, sulfur andtrace amounts of heavy metals. Analyses of selected components in petroleum coke are provided in Appendix 4. The test substance was received from EPL on October 7, 2003 and was assigned Wildlife International, Ltd. identification number 6485A. The test substance appeared as black pellets and was identified as 2 mm Particle Size Petroleum Coke (aka Milled Pellets). The test substance was stored under ambient conditions. An expiration date was not provided.

The identity, strength, purity, composition and method of synthesis, fabrication and/or derivation of each batch of the test substance and the maintenance of these records was the responsibility of the Sponsor.

#### **Reference Standards**

Purified PAH reference standard was made up of components received from three manufacturers.

The following standards were received from Accu Standard Inc. and were stored under am bient conditions:

|                        | Test<br>Substance |               | CAS           | Date     | Expiration  |                  |
|------------------------|-------------------|---------------|---------------|----------|-------------|------------------|
| Component              | Number            | Lot/Batch     | <u>Number</u> | Received | <u>Date</u> | Description      |
| Benzo(a)pyrene         | 6705              | 052803MT-AC   | 50-32-8       | 6/07/04  | 6/03/07     | green powder     |
| Anthracene             | 6706              | A33783        | 120-12-7      | 6/07/04  | 6/03/07     | white powder     |
| Benz(a)anthracene      | 6707              | 19587         | 56-55-3       | 6/07/07  | 6/03/07     | colorless plates |
| Acenaphthylene         | 6708              | 011504MS-AC   | 208-96-8      | 6/07/04  | 6/03/07     | yellow powder    |
| Acenaphthene           | 6709              | 01915EQ       | 83-32-9       | 6/07/04  | 6/03/07     | white crystal    |
| Benzo(b)fluoranthene   | 6710              | 020402AG-AC   | 205-99-2      | 6/07/04  | 6/03/07     | white flakes     |
| Benzo(g,h,i)perylene   | 6711              | 122 500MT-AC  | 191-24-2      | 6/07/04  | 6/03/07     | green powder     |
| Benzo(k)fluoranthene   | 6712              | 112603AG-AC   | 207-08-9      | 6/08/04  | 6/03/07     | yellow powder    |
| Chrysene               | 6713              | 13103         | 218-01-9      | 6/08/04  | 6/03/07     | white powder     |
| Dibenz(a,h)anthracene  | 6714              | 13246         | 53-70-3       | 6/08/04  | 6/03/07     | green powder     |
| Fluoranthene           | 6715              | 19762         | 206-44-0      | 6/08/04  | 6/03/07     | white powder     |
| Fluorene               | 6716              | 19675         | 86-73-7       | 6/08/04  | 6/03/07     | white powder     |
| Indeno(1,2,3-cd)pyrene | 6717              | 19641         | 193-39-5      | 6/08/04  | 6/03/07     | yellow powder    |
| Naphthalene            | 6718              | 167A-A        | 91-20-3       | 6/08/04  | 6/03/07     | white flakes     |
| Phenanthrene           | 6719              | 090903AG-AC-1 | 85-01-8       | 6/08/04  | 6/03/07     | white powder     |
| Pyrene                 | 6720              | 09617LR       | 129-00-0      | 6/08/04  | 6/03/07     | green crystal    |

The following standards were received from Cambridge-Isotope Labs and was stored under ambient conditions:

| Component          | Test<br>Substance<br><u>Number</u> | Lot/Batch | CAS<br><u>Number</u> | Date<br>Received | Expiration<br><u>Date</u> | <u>Description</u> |
|--------------------|------------------------------------|-----------|----------------------|------------------|---------------------------|--------------------|
| Dibenzo(a,e)pyrene | 6518                               | I1-7628   | 192-65-4             | 10/22/03         | Not given                 | Solids             |
| Perylene           | 6493                               | 20330PO   | 198-55-0             | 10/09/03         | Not given                 | Cystalline solid   |

The following standards were received from Ch emService and were stored under am bient conditions:

|                     | Test<br>Substance | Lot/Batch     | CAS     | Date     | Expiration  |             |
|---------------------|-------------------|---------------|---------|----------|-------------|-------------|
| Component           | Number            | <u>Number</u> | Number  | Received | <u>Date</u> | Description |
| 2-Methylnaphthalene | 6765              | 310-43C       | 91-57-6 | 8/03/04  | 9/01/08     | Solid       |
| 1-Methylnaphthalene | 6766              | 325-31A       | 90-12-0 | 8/03/04  | 5/01/09     | Liquid      |

All certificates of analysis for the components are presented in Appendix 4.

#### **Reagents and Solvents**

All solvents used in the methods were of HPLC grade or equivalent.

#### Freshwater

The freshwater used to prepare the method verification studies was obtained from a well approximately 40 meters deep located on the Wildlife e International, Ltd. site. The well water is characterized as moderately-hard water. The means and ranges of specific conductance, hardness, alkalinity and pH measurements of the well waterduring the four-week period immediately preceding the test are presented in Appendix 1.

The well water was passed through a sand filter toremove particles greater than approximately  $25 \mu m$ , and pumped into a 37,800-L storage tankand aerated with spray nozzles. Prior to use, the water was filtered ( $0.45 \mu m$ ) again to remove microorganisms and particles. The results of periodic analyses performed to measure the concentrations of selectedorganic and inorganic constituents in the well water are presented in Appendix 2.

#### **Stocks Preparation by HPLC Analysis**

For all compounds received from AccuStandard, with the exception of Benzo(g,h,i)pery lene, Benzo(k)fluoranthene and Fluoranthene, the mass received was quantitatively transferred to a 100-mL class A volumetric flask using methanol. These primary stock solution concentrations were 0.1 ng/mL.

Benzo(g,h,i)perylene, Benzo(k)fluoranthene and Fl uoranthene were quantitatively transferred to a 200-mL class A volumetric flask using methanol. These primary stock solution concentrations were 0.05 mg/mL.

A stock of Dibenzo(a.e)py rene (received from Cambridge Isotope Labs) was prepared by weighing 0.01000 g on an analytical balance, transferred to a 100-m L class A volum etric flask and brought to volume using tetrahydrofuran. This primary stock solution concentration was 0.1 mg/mL.

Stocks of 2-m ethylnaphthylene and 1-m ethynaphthylene (received from Chem Service) were prepared by weighing 0.1004 g and 0.01003 g, respectively, on an analytical balance. The test materials were transferred to 100-m L class A volumetric flasks and brought to volume using methanol. These primary stock solutions contained 1.00 mg/mL of the test material and were diluted in m ethanol to prepare 0.100 mg/mL secondary stock solutions.

Aliquots (1 mL) of the 0.1 mg/mL primary stocks and 2 mL of the 0.05 mg/mL primary stocks, were added to a 100-mL class A volumetric flask and brought to volume with methanol to produce a 0.1 mg/L combined stock solution. The following shows the dilution scheme for the set of calibration standards prepared in freshwater:

| Stock         |             | Final       | Standard      |
|---------------|-------------|-------------|---------------|
| Concentration | Aliquot     | Volume      | Concentration |
| mg/L          | <u>(µL)</u> | <u>(mL)</u> | $(\mu g/L)$   |
| 1.00          | 50.0        | 10.0        | 5.00          |
| 1.00          | 150         | 10.0        | 15.0          |
| 1.00          | 130         | 10.0        | 13.0          |
| 1.00          | 250         | 10.0        | 25.0          |
| 1.00          | 350         | 10.0        | 35.0          |
| 1.00          | 500         |             | 50.0          |

#### **Analytical Method by HPLC**

The method used for the analysis of the method verification samples was based upon methodology developed by Wildlife International, Ltd. The an alytical method consisted of diluting the sam ples in freshwater, as necessary, and analy zing by direct injection high performance liquid chromatography (HPLC) with either UV detection at 220 nm or fluorescence detection at 340 nm to 425 nm. It was necessary to utilize two detection sy stems (UV and fluorescence) to m easure the PAH com pounds

because some compounds lacked sufficient fluorescence activity for detection. The detectors used for the individual components are noted in the tabulated data.

During evaluation of the instrument settings, the chromatographic retention times for perylene and dibenzo (a,e) pyrene overlapped such that no distinction of the two could be made. The decision was made not to expend further effort to resolve these two minor components in coke. Therefore, only dibenzo (a,e) pyrene was reported.

Concentrations of each PAH compound in the fortified samples were determined using an Agilent Model 1100 High Perform ance Liquid Chromatograph, equipped with either an Agilent Series 1100 Variable Wavelength Detector or a Jasco Model FP-1520 Fluorescence Detector. Chromatographic separations were achieved using a YMC Pack ODS-AM column (150 mm x 4.6 mm, 3 µm particle size). Instrumental parameters for the analysis of PAH components are summarized in Table 1 and a method flowchart is provided in Figure 1.

### Calibration Curve and Limit of Quantitation (LOQ)

Calibration standards of the components, ranging in concentration from 5.00 to 50.0µg/L, were analyzed with the freshwater verification sample set. Linear regression equations were generated using the peak area responses versus the espective concentrations of the calibration standards. Representative calibration curves are presented in Figures 2 through 20. The concentrations of the components in the samples was determined by substituting the peak arearesponses of the samples into the applicable linear regression equation. Representative chrom atograms of low and high-level calibration standards are presented in Figures 21 and 22, respectively.

The method limit of quantitation (LOQ) for the nethod verification analysis of the components in freshwater was set at  $5.00\,\mu\text{g/L}$ , calculated as the product of the lowest calibration standard ( $5.00\,\mu\text{g/L}$ ) and the dilution factor of the matrix blank samples (1.00).

#### **Reagent and Matrix Blank Samples**

Concurrent with the series of matrix fortification samples, two reagent blanks and two matrix blanks for each component were analyzed to determine possible interferences. No interferences were observed at or above the LOQ during the sam ple analyses (Tables 2 through 20). A representative chromatogram of a reagent blank is presented in Figure 23. A representative chromatogram of a matrix blank is presented in Figure 24.

#### Freshwater Method Verification Samples

Freshwater was fortified at 10.0, 40.0 and 100 µg/L using stock solutions containing PAH components in methanol. Results are presented in Tables 21 through 39. Representative chromatograms of low and high-level freshwater fortifications are presented in Figures 25 and 26, respectively.

#### **Example Calculations**

The analytical result and percent recovery for sample number 472C-104-VMAS-21 for 1-Methylnaphthalene, nominal concentration of 40.0  $\mu$ g/L in freshwater, were calculated using the following equations:

1-Methylnaphthalene (
$$\mu$$
g/L) in sample =  $\frac{Peak \ area - (Y-intercept)}{Slope}$  X Dilution factor

Peak area = 96.84348 Y-intercept = -0.2359 Slope = 2.4290 Dilution Factor = 1.00

Concentration of 1-Methylnaphthalene (
$$\mu$$
g/L) in sample =  $\frac{96.84348 + 0.2359}{2.4290}$  X 1.00

Concentration of 1-Methylnaphthalene in sample ( $\mu$ g/L) = 39.97

Percent of nominal concentration = 
$$\frac{39.97 (\mu g/L)}{40.0 (\mu g/L)} X 100$$

Percent of nominal concentration = 99.9%

#### **Preparation of Test Concentration for the WAF Trial**

Petroleum coke was mixed directly with dilution water (well water) on a weight:volume basis. A WAF was prepared at a single high concentration of 1000 mg/L in two different size Pyrex® aspirator bottles with tubulation. For the first WAF, 12.0 grams of the test substance were transferred into 12,000 ml of dilution water contained in a 13.2 L vessel. For the second WAF, 4.00 grams of test substance were transferred into 4000 mLs of dilution water contained in a 4 L vessel. Solutions were prepared by mixing the test solutions with Teflon®-coated stir bars to create a vortexdepth of approximately 30% of the test solution height. After mixing, the WAFs were allowed to settle for 30 minutes to one hour. The test solutions were sampled following approximately 24, 48, 72 and 96 hours of mixing. Samples of each test solution were taken from mid-depth of the mixing vessels using graduated pipettes. Sam ples were

centrifuged at 14,000 rpm for approximately 5 minutes and submitted for HPLC analysis (Tables 21 through 39).

### Calibration Curve and Limit of Quantitation (LOQ) for the WAF Trial

Calibration standards of the components, ranging in concentration from 5.00 to 50.0 µg/L, were analyzed with each sample set. Linear regression equations were generated using the peak area responses versus the respective concentrations of the calibration standards. The concentration of the components in the samples was determined by substituting the peak area responses of the samples into the applicable linear regression equation. Representative chromatograms of low and high-level calibration standards are presented in Figures 50 and 51, respectively.

The method limit of quantitation (LOQ) for the WAF trial was set at  $5.0 \mu g/L$ , calculated as the product of the lowest calibration standard ( $5.00 \mu g/L$ ) and the dilution factor of the matrix blank (1.00). Representative chromatograms of a matrix blank and matrix fortification are presented in Figures 27 and 28, respectively. A representative chromatogram of a test sample is presented in Figure 31.

#### RESULTS OF WAF EQUILIBRATION TRIAL

Water accommodated fractions (WAFs) were analyzed for the presence of the 19 polyaromatic hydrocarbons (PAHs) after mixing for 24, 48, 72 and 96 hours. No PAHs were detected in any WAF samples. Representative chromatograms for a WAF sample are presented in Figures 50-54. Ablank and three quality control (QC) samples were prepared and analyzed at each interval. The QC samples were quantitative for all 19 PAHs (Tables 21-39).

#### **CONCLUSIONS**

Freshwater validation samples containing components of PAH were prepared and analyzed by direct injection high performance liquid chromatography with either UV or fluorescence detection and fortified at nominal concentrations of 10.0, 40.0 and 10 $\mu$ g/L. Recoveries of Naphthalene in freshwater yielded mean percent recoveries of 100, 101 and 88.8%, respectively, with an overall mean recovery of 96.4  $\pm$  5.82% (RSD = 6.04%) (Table 2). Recoveries of Acenaphthylene in freshwater yielded mean percent recoveries of 99.1, 99.8 and 96.4% respectively, with an overall mean recovery of 98.5 $\pm$  1.67% (RSD = 1.70%) (Table 3). Recoveries of 1-Methyllnaphthalene in freshwater yielded mean percent recoveries of 100, 101 and 89.2%, respectively, with an overall mean recovery of 96.6 $\pm$  5.62% (RSD =

5.82%) (Table 4). Recoveries of 2-Methylnaphthalene in freshwater yielded mean percent recoveries of 100, 100 and 86.6% respectively, with an overall mean recovery of  $95.6 \pm 6.84\%$  (RSD = 7.15%) (Table 5). Recoveries of Fluorene in freshwater y ielded mean percent recoveries of 98.0, 100 and 95.7%, respectively, with an overall mean recovery of  $97.9 \pm 2.04\%$  (RSD = 2.08%) (Table 6). Recoveries of Acenaphthene in freshwater yielded mean percent recoveries of 98.4, 99.6 and 93.0%, respectively, with an overall mean recovery of  $97.0 \pm 3.14\%$  (RSD = 3.24%) (Table 7). Recoveries of Phenanthrene in freshwater yielded mean percent recoveries of 98.8,99.6 and 95.8%, respectively, with an overall mean recovery of  $98.1 \pm 1.96\%$  (RSD = 2.00%) (Table 8). Recoveries of Anthracene in freshwater y ielded mean percent recoveries of 99.1, 99.8 and 92.1% respectively, with an overall mean recovery of 97.0± 3.68% (RSD = 3.79%) (Table 9). Recoveries of Fluoranthene in freshwater y ielded mean percent recoveries of 98.5, 98.7 and 92.4% respectively, with an overall mean recovery of 96.6  $\pm$  3.40% (RSD = 3.52%) (Table 10). Recoveries of Pyene in freshwater yielded mean percent recoveries of 93.5, 95.6 and 91.2%, respectively, with an overall mean recovery of 93.5  $\pm$  2.39% (RSD = 2.55%) (Table 11). Recoveries of Chry sene in freshwater y ielded m ean percent recoveries of 94.6, 98.6 and 101%, respectively, with an overall mean recovery of  $98.1 \pm 2.94\%$  (RSD = 3.00%) (Table 12). Recoveries of Benz(a)anthracene in freshwater yielded mean percent recoveries of 94.5, 96.0 and 93.7%, respectively with an overall m ean recovery of 94.7  $\pm 2.04\%$  (RSD = 2.15%) (Table 13). Recoveries of Benzo(b)fluoranthene in freshwater y ielded m ean percent recoveries of 91.4, 96.0 and respectively, with an overall mean recovery of  $94.3 \pm 3.29\%$  (RSD = 3.49%) (Table 14). Recoveries of Benzo(k)fluoranthene in freshwater y ielded m ean percent recoveries of 92.7, 97.7 and respectively, with an overall mean recovery of  $96.8 \pm 3.34\%$  (RSD = 3.45%) (Table 15). Recoveries of Benzo(a)pyrene in freshwater yielded mean percent recoveries of 91.9, 97.0 and 98.1%, respectively, with an overall m ean recovery of 95.7  $\pm 3.14\%$  (RSD = 3.28%) (Table 16). Recoveries of Dibenz(a,h,)anthracene in freshwater y ielded m can percent recoveries of 92.1, 97.3 and 100%, respectively, with an overall mean recovery of  $96.5 \pm 3.74\%$  (RSD = 3.88%) (Table 17). Recoveries of Indeno(1,2,3-cd)pyrene in freshwater y ielded m ean percent recoveries of 94.1, 97.6 and 98.6% respectively, with an overall mean recovery of  $96.8 \pm 2.44\%$  (RSD = 2.52%) (Table 18). Recoveries of Benzo(g,h,i)perylene in freshwater y ielded m ean percent recoveries of 95.9, 96.3 and 97.1% respectively, with an overall mean recovery of  $96.4 \pm 1.49\%$  (RSD = 1.55%) (Table 19). Recoveries of Dibenzo(a,e)pyrene in freshwater yielded mean percent recoveries of 93.3, 96.3 and 99.1% respectively, with an overall mean recovery of  $96.2 \pm 2.95\%$  (RSD = 3.07%) (Table 20).

- 22 -

#### **REFERENCES**

1 **European Commission.** 2002. Residues: Guidance for Generating and Reporting M ethods of Analysis in Support of Pre-registration Data Requirements for Annex II (Part A, Section 4) and Annex III (Part A, Section 5) of Directive 91/414. SANCO/3029/99 rev. 4, 11/07/00.

- 23 -

Table 1

### Typical HPLC Operational Parameters

INSTRUMENT: Agilent Model 1100 High Perform ance Liquid Chromatograph (HPLC)

with a either an Agilent Series 1100 Variable Wavelength Detector or a

Jasco Model FP-1520 Fluorescence Detector

ANALYTICAL COLUMN: YMC-Pack ODS AM (150 mm x 4.6 mm, 3 µm particle size)

STOP TIME: 35 minutes

FLOW RATE: 1.00 mL/minute

OVEN TEMPERATURE: 40°C

MOBILE PHASE: SOLVENT A: 0.1% H<sub>3</sub>PO<sub>4</sub>

SOLVENT B: CH<sub>3</sub>CN

GRADIENT: Time Flow

| ( <u>min)</u> | <u>%A</u> | <u>%B</u> (m | L/min) |
|---------------|-----------|--------------|--------|
| 0.01          | 40.0      | 60.0         | 1.000  |
| 1.00          | 40.0      | 60.0         | 1.000  |
| 30.00         | 0.0       | 100.0        | 1.000  |
| 30.10         | 40.0      | 60.0         | 1.000  |
| 35.00         | 40.0      | 60.0         | 1.000  |

INJECTION VOLUME: 100 μL

APPROXIMATE Naphthalene = 6.7 min. Chrysene = 16.0 min.

RETENTION TIMES: Acenaphthylene = 7.7 min. Benz(a)anthracene = 16.3 min.

1-Methylnaphthalene = 8.8 min.
2-Methylnaphthalene = 9.1 min.

Benzo(b)fluoranthene = 19.0 min.

Benzo(k)fluoranthene = 19.4 min.

Benzo(a)pyrana = 20.1 min.

Fluorene = 9.7 min.

Acenaphthene = 9.9 min.

Dibenz(a,h,)anthracene = 21.7

Phenanthrene = 10.6 min. min.

Anthracene = 11.3 min.

Fluoranthene = 12.9 min.

Pyrene = 13.7 min.

Indeno(1,2,3-cd)pyrene = 23 min.

Benzo(g,h,i)perylene = 23.2 min.

Dibenzo(a,e)pyrene = 25 min.

PRIMARY ANALYTICAL

WAVELENGTHS UV = 220 nm; Fluorescence = 340 nm to 425nm

Table 2

Method Verification Recoveries of Naphthalene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean        | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|-------------|---------------------|
| Number      |                      |           |                         | Percent               | Measured    | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | $(\mu g/L)$ | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |             |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |             |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 10.1                    | 101                   | 10.0        | Mean = 100          |
| VMAS-17     | Matrix Fortification | 10.0      | 10.0                    | 100                   |             | Std. Dev. = $0.581$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.99                    | 99.9                  |             | RSD = 0.581%        |
| VMAS-19     | Matrix Fortification | 10.0      | 10.0                    | 100                   |             |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.94                    | 99.4                  |             |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 40.0                    | 99.9                  | 40.1        | Mean = 101          |
| VMAS-22     | Matrix Fortification | 40.0      | 40.2                    | 101                   |             | Std. Dev. = $0.576$ |
| VMAS-23     | Matrix Fortification | 40.0      | 40.3                    | 101                   |             | RSD = 0.570%        |
| VMAS-24     | Matrix Fortification | 40.0      | 40.2                    | 101                   |             |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 40.0                    | 100                   |             |                     |
| VMAS-26     | Matrix Fortification | 100       | 90.9                    | 90.9                  | 88.8        | Mean = $88.8$       |
| VMAS-27     | Matrix Fortification | 100       | 92.9                    | 92.9                  |             | Std. Dev. = $3.01$  |
| VMAS-28     | Matrix Fortification | 100       | 86.7                    | 86.7                  |             | RSD = 3.39%         |
| VMAS-29     | Matrix Fortification | 100       | 87.5                    | 87.5                  |             |                     |
| VMAS-30     | Matrix Fortification | 100       | 85.8                    | 85.8                  |             |                     |
|             |                      |           | Mean =                  | 96.4                  |             |                     |
|             |                      |           | Std. Dev.=              | 5.82                  |             |                     |
|             |                      |           | RSD =                   | 6.04%                 |             |                     |
|             |                      |           | N =                     | 15                    |             |                     |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 3

Method Verification Recoveries of Acenaphthylene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean     | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|----------|---------------------|
| Number      |                      |           |                         | Percent               | Measured | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |          |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |          |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 9.96                    | 99.6                  | 9.92     | Mean = $99.1$       |
| VMAS-17     | Matrix Fortification | 10.0      | 9.89                    | 98.9                  |          | Std. Dev. = $0.647$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.88                    | 98.8                  |          | RSD = 0.652%        |
| VMAS-19     | Matrix Fortification | 10.0      | 10.0                    | 100                   |          |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.84                    | 98.4                  |          |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 39.8                    | 99.5                  | 39.9     | Mean = $99.8$       |
| VMAS-22     | Matrix Fortification | 40.0      | 40.0                    | 99.9                  |          | Std. Dev. = $0.235$ |
| VMAS-23     | Matrix Fortification | 40.0      | 40.0                    | 100                   |          | RSD = 0.235%        |
| VMAS-24     | Matrix Fortification | 40.0      | 40.0                    | 100                   |          |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 39.8                    | 99.6                  |          |                     |
| VMAS-26     | Matrix Fortification | 100       | 96.2                    | 96.2                  | 96.4     | Mean = $96.4$       |
| VMAS-27     | Matrix Fortification | 100       | 98.0                    | 98.0                  |          | Std. Dev. = $0.923$ |
| VMAS-28     | Matrix Fortification | 100       | 96.0                    | 96.0                  |          | RSD = 0.957%        |
| VMAS-29     | Matrix Fortification | 100       | 96.0                    | 96.0                  |          |                     |
| VMAS-30     | Matrix Fortification | 100       | 95.7                    | 95.7                  |          |                     |
|             |                      |           | Mean =                  | 98.5                  |          |                     |
|             |                      |           | Std. Dev.=              | 1.67                  |          |                     |
|             |                      |           | RSD =                   | 1.70%                 |          |                     |
|             |                      |           | N =                     | 15                    |          |                     |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 4 Method Verification Recoveries of 1-Methylnaphthalene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean     | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|----------|---------------------|
| Number      |                      |           |                         | Percent               | Measured | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ    | ==                  |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |          |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |          |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 10.1                    | 101                   | 10.0     | Mean = 100          |
| VMAS-17     | Matrix Fortification | 10.0      | 10.0                    | 100                   |          | Std. Dev. = $0.683$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.99                    | 99.9                  |          | RSD = 0.683%        |
| VMAS-19     | Matrix Fortification | 10.0      | 10.1                    | 101                   |          |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.95                    | 99.5                  |          |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 40.0                    | 99.9                  | 40.1     | Mean = 101          |
| VMAS-22     | Matrix Fortification | 40.0      | 40.3                    | 101                   |          | Std. Dev. = $0.631$ |
| VMAS-23     | Matrix Fortification | 40.0      | 40.2                    | 101                   |          | RSD = 0.625%        |
| VMAS-24     | Matrix Fortification | 40.0      | 40.2                    | 101                   |          |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 39.9                    | 99.8                  |          |                     |
| VMAS-26     | Matrix Fortification | 100       | 90.9                    | 90.9                  | 89.2     | Mean = $89.2$       |
| VMAS-27     | Matrix Fortification | 100       | 93.9                    | 93.3                  |          | Std. Dev. $= 2.83$  |
| VMAS-28     | Matrix Fortification | 100       | 87.5                    | 87.5                  |          | RSD = 3.18%         |
| VMAS-29     | Matrix Fortification | 100       | 87.7                    | 87.7                  |          |                     |
| VMAS-30     | Matrix Fortification | 100       | 86.5                    | 86.5                  |          |                     |
|             |                      |           | Mean =                  | 96.6                  |          |                     |
|             |                      |           | Std. Dev.=              | 5.62                  |          |                     |
|             |                      |           | RSD =                   | 5.82%                 |          |                     |
|             |                      |           | N =                     | 15                    |          |                     |

The limit of quantitation (LOQ) was 5.00 µg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 5 Method Verification Recoveries of 2-Methylnaphthalene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean     | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|----------|---------------------|
| Number      |                      |           |                         | Percent               | Measured | Std. Dev.           |
| (472C-104-) | Туре                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |          |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |          |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 10.1                    | 101                   | 9.99     | Mean = 100          |
| VMAS-17     | Matrix Fortification | 10.0      | 10.0                    | 100                   |          | Std. Dev. = $0.720$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.97                    | 99.7                  |          | RSD = 0.720%        |
| VMAS-19     | Matrix Fortification | 10.0      | 10.0                    | 100                   |          |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.90                    | 99.0                  |          |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 40.0                    | 100                   | 40.1     | Mean = 100          |
| VMAS-22     | Matrix Fortification | 40.0      | 40.3                    | 101                   |          | Std. Dev. = $0.780$ |
| VMAS-23     | Matrix Fortification | 40.0      | 40.2                    | 101                   |          | RSD = 0.780%        |
| VMAS-24     | Matrix Fortification | 40.0      | 40.3                    | 101                   |          |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 39.7                    | 99.3                  |          |                     |
| VMAS-26     | Matrix Fortification | 100       | 88.8                    | 88.8                  | 86.6     | Mean = $86.6$       |
| VMAS-27     | Matrix Fortification | 100       | 91.4                    | 91.4                  |          | Std. Dev. $= 3.35$  |
| VMAS-28     | Matrix Fortification | 100       | 84.6                    | 84.6                  |          | RSD = 3.87%         |
| VMAS-29     | Matrix Fortification | 100       | 84.9                    | 84.9                  |          |                     |
| VMAS-30     | Matrix Fortification | 100       | 83.4                    | 83.4                  |          |                     |
|             |                      |           | Mean =                  | 95.6                  | _        |                     |
|             |                      |           | Std. Dev.=              | 6.84                  |          |                     |
|             |                      |           | RSD =                   | 7.15%                 |          |                     |
|             |                      |           | N =                     | 15                    |          |                     |

The limit of quantitation (LOQ) was 5.00 µg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 6

Method Verification Recoveries of Fluorene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean        | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|-------------|---------------------|
| Number      |                      |           |                         | Percent               | Measured    | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | $(\mu g/L)$ | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |             |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |             |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 9.74                    | 97.4                  | 9.80        | Mean = $98.0$       |
| VMAS-17     | Matrix Fortification | 10.0      | 9.87                    | 98.7                  |             | Std. Dev. = $1.17$  |
| VMAS-18     | Matrix Fortification | 10.0      | 9.81                    | 98.1                  |             | RSD = 1.19%         |
| VMAS-19     | Matrix Fortification | 10.0      | 9.93                    | 99.3                  |             |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.63                    | 96.3                  |             |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 40.0                    | 99.9                  | 40.0        | Mean = 100          |
| VMAS-22     | Matrix Fortification | 40.0      | 40.2                    | 101                   |             | Std. Dev. = $0.844$ |
| VMAS-23     | Matrix Fortification | 40.0      | 40.3                    | 101                   |             | RSD = 0.843%        |
| VMAS-24     | Matrix Fortification | 40.0      | 40.1                    | 100                   |             |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 39.6                    | 99.0                  |             |                     |
| VMAS-26     | Matrix Fortification | 100       | 95.3                    | 95.3                  | 95.7        | Mean = $95.7$       |
| VMAS-27     | Matrix Fortification | 100       | 97.4                    | 97.4                  |             | Std. Dev. = $0.986$ |
| VMAS-28     | Matrix Fortification | 100       | 95.8                    | 95.8                  |             | RSD = 1.03%         |
| VMAS-29     | Matrix Fortification | 100       | 95.5                    | 95.5                  |             |                     |
| VMAS-30     | Matrix Fortification | 100       | 94.8                    | 94.8                  |             |                     |
|             |                      |           | Mean =                  | 97.9                  |             |                     |
|             |                      |           | Std. Dev.=              | 2.04                  |             |                     |
|             |                      |           | RSD =                   | 2.08%                 |             |                     |
|             |                      |           | N =                     | 15                    |             |                     |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 7

Method Verification Recoveries of Acenaphthene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean     | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|----------|---------------------|
| Number      |                      |           |                         | Percent               | Measured | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |          |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |          |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 9.87                    | 98.7                  | 9.84     | Mean = $98.4$       |
| VMAS-17     | Matrix Fortification | 10.0      | 9.76                    | 97.6                  |          | Std. Dev. = $0.820$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.82                    | 98.2                  |          | RSD = 0.834%        |
| VMAS-19     | Matrix Fortification | 10.0      | 9.96                    | 99.6                  |          |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.77                    | 97.7                  |          |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 39.8                    | 99.5                  | 3.98     | Mean = $99.6$       |
| VMAS-22     | Matrix Fortification | 40.0      | 39.9                    | 99.8                  |          | Std. Dev. = $0.451$ |
| VMAS-23     | Matrix Fortification | 40.0      | 39.9                    | 99.9                  |          | RSD = 0.452%        |
| VMAS-24     | Matrix Fortification | 40.0      | 39.9                    | 99.8                  |          |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 39.5                    | 98.8                  |          |                     |
| VMAS-26     | Matrix Fortification | 100       | 93.4                    | 93.4                  | 93.0     | Mean = $93.0$       |
| VMAS-27     | Matrix Fortification | 100       | 95.6                    | 95.6                  |          | Std. Dev. = $1.65$  |
| VMAS-28     | Matrix Fortification | 100       | 92.5                    | 92.5                  |          | RSD = 1.77%         |
| VMAS-29     | Matrix Fortification | 100       | 91.8                    | 91.8                  |          |                     |
| VMAS-30     | Matrix Fortification | 100       | 91.5                    | 91.5                  |          |                     |
| <u></u>     |                      |           | Mean =                  | 97.0                  |          |                     |
|             |                      |           | Std. Dev.=              | 3.14                  |          |                     |
|             |                      |           | RSD =                   | 3.24%                 |          |                     |
|             |                      |           | N =                     | 15                    |          |                     |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 8

Method Verification Recoveries of Phenanthrene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean        | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|-------------|---------------------|
| Number      |                      | <u> </u>  |                         | Percent               | Measured    | Std. Dev.           |
| (472C-104-) | Туре                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | $(\mu g/L)$ | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |             |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |             |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 9.94                    | 99.4                  | 9.88        | Mean = $98.8$       |
| VMAS-17     | Matrix Fortification | 10.0      | 9.84                    | 98.4                  |             | Std. Dev. = $0.614$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.83                    | 98.3                  |             | RSD = 0.621%        |
| VMAS-19     | Matrix Fortification | 10.0      | 9.95                    | 99.5                  |             |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.83                    | 98.3                  |             |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 40.0                    | 99.9                  | 40.0        | Mean = $99.6$       |
| VMAS-22     | Matrix Fortification | 40.0      | 40.2                    | 100                   |             | Std. Dev. = $0.795$ |
| VMAS-23     | Matrix Fortification | 40.0      | 40.2                    | 100                   |             | RSD = 0.798%        |
| VMAS-24     | Matrix Fortification | 40.0      | 40.1                    | 100                   |             |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 39.3                    | 98.2                  |             |                     |
| VMAS-26     | Matrix Fortification | 100       | 94.8                    | 94.8                  | 95.8        | Mean = $95.8$       |
| VMAS-27     | Matrix Fortification | 100       | 97.4                    | 97.4                  |             | Std. Dev. = $1.01$  |
| VMAS-28     | Matrix Fortification | 100       | 95.8                    | 95.8                  |             | RSD = 1.05%         |
| VMAS-29     | Matrix Fortification | 100       | 95.8                    | 95.8                  |             |                     |
| VMAS-30     | Matrix Fortification | 100       | 95.1                    | 95.1                  |             |                     |
|             |                      |           | Mean =                  | 98.1                  |             |                     |
|             |                      |           | Std. Dev.=              | 1.96                  |             |                     |
|             |                      |           | RSD =                   | 2.00%                 |             |                     |
|             |                      |           | N =                     | 15                    |             |                     |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 9

Method Verification Recoveries of Anthracene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean        | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|-------------|---------------------|
| Number      |                      |           |                         | Percent               | Measured    | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | $(\mu g/L)$ | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |             |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |             |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 9.95                    | 99.5                  | 9.91        | Mean = $99.1$       |
| VMAS-17     | Matrix Fortification | 10.0      | 9.90                    | 99.0                  |             | Std. Dev. = $0.495$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.92                    | 99.2                  |             | RSD = 0.499%        |
| VMAS-19     | Matrix Fortification | 10.0      | 9.95                    | 99.5                  |             |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.83                    | 98.3                  |             |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 39.8                    | 99.6                  | 39.9        | Mean = $99.8$       |
| VMAS-22     | Matrix Fortification | 40.0      | 40.3                    | 101                   |             | Std. Dev. = $1.44$  |
| VMAS-23     | Matrix Fortification | 40.0      | 40.2                    | 101                   |             | RSD = 1.44%         |
| VMAS-24     | Matrix Fortification | 40.0      | 40.1                    | 100                   |             |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 39.0                    | 97.5                  |             |                     |
| VMAS-26     | Matrix Fortification | 100       | 92.5                    | 92.5                  | 92.1        | Mean = $92.1$       |
| VMAS-27     | Matrix Fortification | 100       | 93.0                    | 93.0                  |             | Std. Dev. = $0.766$ |
| VMAS-28     | Matrix Fortification | 100       | 92.2                    | 92.2                  |             | RSD = 0.832%        |
| VMAS-29     | Matrix Fortification | 100       | 91.7                    | 91.7                  |             |                     |
| VMAS-30     | Matrix Fortification | 100       | 91.0                    | 91.0                  |             |                     |
|             |                      |           | Mean =                  | 97.0                  |             |                     |
|             |                      |           | Std. Dev.=              | 3.68                  |             |                     |
|             |                      |           | RSD =                   | 3.79%                 |             |                     |
|             |                      |           | N =                     | 15                    |             |                     |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 10

Method Verification Recoveries of Fluoranthene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean     | Mean % Recovery    |
|-------------|----------------------|-----------|-------------------------|-----------------------|----------|--------------------|
| Number      |                      |           |                         | Percent               | Measured | Std. Dev.          |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)              |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ    |                    |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |          |                    |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ    |                    |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |          |                    |
| VMAS-16     | Matrix Fortification | 10.0      | 10.1                    | 101                   | 9.84     | Mean = $98.5$      |
| VMAS-17     | Matrix Fortification | 10.0      | 9.73                    | 97.3                  |          | Std. Dev. = $1.48$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.84                    | 98.4                  |          | RSD = 1.50%        |
| VMAS-19     | Matrix Fortification | 10.0      | 9.76                    | 97.6                  |          |                    |
| VMAS-20     | Matrix Fortification | 10.0      | 9.80                    | 98.0                  |          |                    |
| VMAS-21     | Matrix Fortification | 40.0      | 39.4                    | 98.4                  | 39.5     | Mean = $98.7$      |
| VMAS-22     | Matrix Fortification | 40.0      | 40.0                    | 100                   |          | Std. Dev. = $1.48$ |
| VMAS-23     | Matrix Fortification | 40.0      | 40.1                    | 100                   |          | RSD = 1.50%        |
| VMAS-24     | Matrix Fortification | 40.0      | 39.6                    | 98.9                  |          |                    |
| VMAS-25     | Matrix Fortification | 40.0      | 38.6                    | 96.4                  |          |                    |
| VMAS-26     | Matrix Fortification | 100       | 92.3                    | 92.3                  | 92.4     | Mean = $92.4$      |
| VMAS-27     | Matrix Fortification | 100       | 95.5                    | 95.5                  |          | Std. Dev. = $1.97$ |
| VMAS-28     | Matrix Fortification | 100       | 92.2                    | 92.2                  |          | RSD = 2.13%        |
| VMAS-29     | Matrix Fortification | 100       | 92.1                    | 92.1                  |          |                    |
| VMAS-30     | Matrix Fortification | 100       | 90.0                    | 90.0                  |          |                    |
|             |                      |           | Mean =                  | 96.6                  |          |                    |
|             |                      |           | Std. Dev.=              | 3.40                  |          |                    |
|             |                      |           | RSD =                   | 3.52%                 |          |                    |
|             |                      |           | N =                     | 15                    |          |                    |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 11

Method Verification Recoveries of Pyrene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean        | Mean % Recovery    |
|-------------|----------------------|-----------|-------------------------|-----------------------|-------------|--------------------|
| Number      |                      |           |                         | Percent               | Measured    | Std. Dev.          |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | $(\mu g/L)$ | (RSD)              |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ       |                    |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |             |                    |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ       |                    |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |             |                    |
| VMAS-16     | Matrix Fortification | 10.0      | 9.62                    | 96.2                  | 9.35        | Mean = 93.5        |
| VMAS-17     | Matrix Fortification | 10.0      | 9.22                    | 92.2                  |             | Std. Dev. = $1.55$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.31                    | 93.1                  |             | RSD = 1.66%        |
| VMAS-19     | Matrix Fortification | 10.0      | 9.30                    | 93.0                  |             |                    |
| VMAS-20     | Matrix Fortification | 10.0      | 9.30                    | 93.0                  |             |                    |
| VMAS-21     | Matrix Fortification | 40.0      | 38.0                    | 95.0                  | 38.3        | Mean = $95.6$      |
| VMAS-22     | Matrix Fortification | 40.0      | 38.6                    | 96.5                  |             | Std. Dev. = $1.49$ |
| VMAS-23     | Matrix Fortification | 40.0      | 39.0                    | 97.4                  |             | RSD = 1.56%        |
| VMAS-24     | Matrix Fortification | 40.0      | 38.3                    | 95.8                  |             |                    |
| VMAS-25     | Matrix Fortification | 40.0      | 37.4                    | 93.5                  |             |                    |
| VMAS-26     | Matrix Fortification | 100       | 90.1                    | 90.1                  | 91.2        | Mean = $91.2$      |
| VMAS-27     | Matrix Fortification | 100       | 94.1                    | 94.1                  |             | Std. Dev. $= 1.80$ |
| VMAS-28     | Matrix Fortification | 100       | 91.1                    | 91.1                  |             | RSD = 1.97%        |
| VMAS-29     | Matrix Fortification | 100       | 91.5                    | 91.5                  |             |                    |
| VMAS-30     | Matrix Fortification | 100       | 89.4                    | 89.4                  |             |                    |
|             |                      |           | Mean =                  | 93.5                  |             |                    |
|             |                      |           | Std. Dev.=              | 2.39                  |             |                    |
|             |                      |           | RSD =                   | 2.55%                 |             |                    |
|             |                      |           | N =                     | 15                    |             |                    |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 12

Method Verification Recoveries of Chrysene in Freshwater Analyzed by HPLC/UV

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean        | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|-------------|---------------------|
| Number      |                      |           |                         | Percent               | Measured    | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | $(\mu g/L)$ | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |             |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ       |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |             |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 9.50                    | 95.0                  | 9.46        | Mean = $94.6$       |
| VMAS-17     | Matrix Fortification | 10.0      | 9.31                    | 93.1                  |             | Std. Dev. = $1.34$  |
| VMAS-18     | Matrix Fortification | 10.0      | 9.55                    | 95.5                  |             | RSD = 1.41%         |
| VMAS-19     | Matrix Fortification | 10.0      | 9.33                    | 93.3                  |             |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.61                    | 96.1                  |             |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 39.7                    | 99.1                  | 39.4        | Mean = $98.6$       |
| VMAS-22     | Matrix Fortification | 40.0      | 39.9                    | 99.7                  |             | Std. Dev. = $1.27$  |
| VMAS-23     | Matrix Fortification | 40.0      | 39.5                    | 98.8                  |             | RSD = 1.29%         |
| VMAS-24     | Matrix Fortification | 40.0      | 39.6                    | 99.0                  |             |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 38.5                    | 96.4                  |             |                     |
| VMAS-26     | Matrix Fortification | 100       | 101                     | 101                   | 101         | Mean = 101          |
| VMAS-27     | Matrix Fortification | 100       | 102                     | 102                   |             | Std. Dev. = $0.837$ |
| VMAS-28     | Matrix Fortification | 100       | 100                     | 100                   |             | RSD = 0.828%        |
| VMAS-29     | Matrix Fortification | 100       | 101                     | 101                   |             |                     |
| VMAS-30     | Matrix Fortification | 100       | 100                     | 100                   |             |                     |
|             |                      |           | Mean =                  | 98.1                  |             |                     |
|             |                      |           | Std. Dev.=              | 2.94                  |             |                     |
|             |                      |           | RSD =                   | 3.00%                 |             |                     |
|             |                      |           | N =                     | 15                    |             |                     |

The limit of quantitation (LOQ) was 5.00  $\mu$ g/L, calculated as the product of the concentration of the lowest standard (5.00  $\mu$ g/L) and the dilution factor of the matrix blanks (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 13 Method Verification Recoveries of Benz(a)anthracene in Freshwater Analyzed by HPLC with Fluorescence Detection

| Sample      |                      | Concentration (µg/L) |                         |                       | Mean     | Mean % Recovery    |
|-------------|----------------------|----------------------|-------------------------|-----------------------|----------|--------------------|
| Number      |                      |                      |                         | Percent               | Measured | Std. Dev.          |
| (472C-104-) | Туре                 | Fortified            | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)              |
| VREB-3      | Reagent Blank        | 0.0                  | < LOQ                   |                       | < LOQ    |                    |
| VREB-4      | Reagent Blank        | 0.0                  | < LOQ                   |                       |          |                    |
| VMAB-3      | Matrix Blank         | 0.0                  | < LOQ                   |                       | < LOQ    |                    |
| VMAB-4      | Matrix Blank         | 0.0                  | < LOQ                   |                       |          |                    |
| VMAS-16     | Matrix Fortification | 10.0                 | 9.68                    | 96.8                  | 9.45     | Mean = $94.5$      |
| VMAS-17     | Matrix Fortification | 10.0                 | 9.37                    | 93.7                  |          | Std. Dev. = $1.77$ |
| VMAS-18     | Matrix Fortification | 10.0                 | 9.54                    | 95.4                  |          | RSD = 1.87%        |
| VMAS-19     | Matrix Fortification | 10.0                 | 9.21                    | 92.1                  |          |                    |
| VMAS-20     | Matrix Fortification | 10.0                 | 9.45                    | 94.5                  |          |                    |
| VMAS-21     | Matrix Fortification | 40.0                 | 38.1                    | 95.2                  | 38.4     | Mean = $96.0$      |
| VMAS-22     | Matrix Fortification | 40.0                 | 38.5                    | 96.2                  |          | Std. Dev. $= 2.32$ |
| VMAS-23     | Matrix Fortification | 40.0                 | 38.9                    | 97.2                  |          | RSD = 2.42%        |
| VMAS-24     | Matrix Fortification | 40.0                 | 39.5                    | 98.8                  |          |                    |
| VMAS-25     | Matrix Fortification | 40.0                 | 37.0                    | 92.6                  |          |                    |
| VMAS-26     | Matrix Fortification | 100                  | 95.2                    | 95.2                  | 93.7     | Mean = $93.7$      |
| VMAS-27     | Matrix Fortification | 100                  | 94.5                    | 94.5                  |          | Std. Dev. = $1.61$ |
| VMAS-28     | Matrix Fortification | 100                  | 93.9                    | 93.9                  |          | RSD = 1.72%        |
| VMAS-29     | Matrix Fortification | 100                  | 94.1                    | 94.1                  |          |                    |
| VMAS-30     | Matrix Fortification | 100                  | 91.0                    | 91.0                  |          |                    |
|             |                      |                      | Mean =                  | 94.7                  |          |                    |
|             |                      |                      | Std. Dev.=              | 2.04                  |          |                    |
|             |                      |                      | RSD =                   | 2.15%                 |          |                    |
|             |                      |                      | N =                     | 15                    |          |                    |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00 μg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 14 Method Verification Recoveries of Benzo(b)fluoranthene in Freshwater Analyzed by HPLC with Fluorescence Detection

| Sample      |                      | Concentration (µg/L) |                         |                       | Mean     | Mean % Recovery    |
|-------------|----------------------|----------------------|-------------------------|-----------------------|----------|--------------------|
| Number      |                      |                      |                         | Percent               | Measured | Std. Dev.          |
| (472C-104-) | Type                 | Fortified            | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)              |
| VREB-3      | Reagent Blank        | 0.0                  | < LOQ                   |                       | < LOQ    |                    |
| VREB-4      | Reagent Blank        | 0.0                  | < LOQ                   |                       |          |                    |
| VMAB-3      | Matrix Blank         | 0.0                  | < LOQ                   |                       | < LOQ    |                    |
| VMAB-4      | Matrix Blank         | 0.0                  | < LOQ                   |                       |          |                    |
| VMAS-16     | Matrix Fortification | 10.0                 | 9.29                    | 92.9                  | 9.14     | Mean = 91.4        |
| VMAS-17     | Matrix Fortification | 10.0                 | 9.03                    | 90.3                  |          | Std. Dev. $= 1.63$ |
| VMAS-18     | Matrix Fortification | 10.0                 | 9.16                    | 91.6                  |          | RSD = 1.78%        |
| VMAS-19     | Matrix Fortification | 10.0                 | 8.92                    | 89.2                  |          |                    |
| VMAS-20     | Matrix Fortification | 10.0                 | 9.29                    | 92.9                  |          |                    |
| VMAS-21     | Matrix Fortification | 40.0                 | 38.4                    | 96.1                  | 38.4     | Mean = $96.0$      |
| VMAS-22     | Matrix Fortification | 40.0                 | 39.4                    | 98.5                  |          | Std. Dev. $= 2.31$ |
| VMAS-23     | Matrix Fortification | 40.0                 | 39.2                    | 98.1                  |          | RSD = 2.41%        |
| VMAS-24     | Matrix Fortification | 40.0                 | 37.3                    | 93.2                  |          |                    |
| VMAS-25     | Matrix Fortification | 40.0                 | 37.7                    | 94.3                  |          |                    |
| VMAS-26     | Matrix Fortification | 100                  | 96.9                    | 96.9                  | 95.5     | Mean = $95.5$      |
| VMAS-27     | Matrix Fortification | 100                  | 100                     | 100                   |          | Std. Dev. $= 3.58$ |
| VMAS-28     | Matrix Fortification | 100                  | 93.0                    | 93.0                  |          | RSD = 3.75%        |
| VMAS-29     | Matrix Fortification | 100                  | 96.8                    | 96.8                  |          |                    |
| VMAS-30     | Matrix Fortification | 100                  | 90.9                    | 90.9                  |          |                    |
|             |                      |                      | Mean =                  | 94.3                  |          |                    |
|             |                      |                      | Std. Dev.=              | 3.29                  |          |                    |
|             |                      |                      | RSD =                   | 3.49%                 |          |                    |
|             |                      |                      | N =                     | 15                    |          |                    |

The limit of quantitation (LOQ) was 5.00 µg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 15 Method Verification Recoveries of Benzo(k)fluoranthene in Freshwater Analyzed by HPLC with Fluorescence Detection

|             | Sample Concentration (µg/L) |           |                         | Mean                  | Mean % Recovery |                     |
|-------------|-----------------------------|-----------|-------------------------|-----------------------|-----------------|---------------------|
| Number      |                             |           |                         | Percent               | Measured        | Std. Dev.           |
| (472C-104-) | Type                        | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)          | (RSD)               |
| VREB-3      | Reagent Blank               | 0.0       | < LOQ                   |                       | < LOQ           | ==                  |
| VREB-4      | Reagent Blank               | 0.0       | < LOQ                   |                       |                 |                     |
| VMAB-3      | Matrix Blank                | 0.0       | < LOQ                   |                       | < LOQ           |                     |
| VMAB-4      | Matrix Blank                | 0.0       | < LOQ                   |                       |                 |                     |
| VMAS-16     | Matrix Fortification        | 10.0      | 9.31                    | 93.1                  | 9.27            | Mean = $92.7$       |
| VMAS-17     | Matrix Fortification        | 10.0      | 9.22                    | 92.2                  |                 | Std. Dev. = $1.30$  |
| VMAS-18     | Matrix Fortification        | 10.0      | 9.41                    | 94.1                  |                 | RSD = 1.40%         |
| VMAS-19     | Matrix Fortification        | 10.0      | 9.07                    | 90.7                  |                 |                     |
| VMAS-20     | Matrix Fortification        | 10.0      | 9.33                    | 93.3                  |                 |                     |
| VMAS-21     | Matrix Fortification        | 40.0      | 39.2                    | 98.0                  | 39.1            | Mean = $97.7$       |
| VMAS-22     | Matrix Fortification        | 40.0      | 39.5                    | 98.6                  |                 | Std. Dev. = $1.27$  |
| VMAS-23     | Matrix Fortification        | 40.0      | 39.3                    | 98.4                  |                 | RSD = 1.30%         |
| VMAS-24     | Matrix Fortification        | 40.0      | 39.3                    | 98.2                  |                 |                     |
| VMAS-25     | Matrix Fortification        | 40.0      | 38.2                    | 95.5                  |                 |                     |
| VMAS-26     | Matrix Fortification        | 100       | 100                     | 100                   | 99.9            | Mean = $99.9$       |
| VMAS-27     | Matrix Fortification        | 100       | 101                     | 101                   |                 | Std. Dev. = $0.787$ |
| VMAS-28     | Matrix Fortification        | 100       | 99.7                    | 99.7                  |                 | RSD = 0.788%        |
| VMAS-29     | Matrix Fortification        | 100       | 100                     | 100                   |                 |                     |
| VMAS-30     | Matrix Fortification        | 100       | 98.8                    | 98.8                  |                 |                     |
|             |                             |           | Mean =                  | 96.8                  |                 |                     |
|             |                             |           | Std. Dev.=              | 3.34                  |                 |                     |
|             |                             |           | RSD =                   | 3.45%                 |                 |                     |
|             |                             |           | N =                     | 15                    |                 |                     |

The limit of quantitation (LOQ) was 5.00 µg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 16 Method Verification Recoveries of Benzo(a)pyrene in Freshwater Analyzed by HPLC with Fluorescence Detection

|             | Sample Concentration (μg/L) |           | ation (µg/L)            |                       | Mean     | Mean % Recovery    |
|-------------|-----------------------------|-----------|-------------------------|-----------------------|----------|--------------------|
| Number      |                             |           |                         | Percent               | Measured | Std. Dev.          |
| (472C-104-) | Type                        | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)              |
| VREB-3      | Reagent Blank               | 0.0       | < LOQ                   |                       | < LOQ    |                    |
| VREB-4      | Reagent Blank               | 0.0       | < LOQ                   |                       |          |                    |
| VMAB-3      | Matrix Blank                | 0.0       | < LOQ                   |                       | < LOQ    |                    |
| VMAB-4      | Matrix Blank                | 0.0       | < LOQ                   |                       |          |                    |
| VMAS-16     | Matrix Fortification        | 10.0      | 9.36                    | 93.6                  | 9.19     | Mean = $91.9$      |
| VMAS-17     | Matrix Fortification        | 10.0      | 9.20                    | 92.0                  |          | Std. Dev. = $2.15$ |
| VMAS-18     | Matrix Fortification        | 10.0      | 9.35                    | 93.5                  |          | RSD = 2.34%        |
| VMAS-19     | Matrix Fortification        | 10.0      | 8.83                    | 88.3                  |          |                    |
| VMAS-20     | Matrix Fortification        | 10.0      | 9.23                    | 92.3                  |          |                    |
| VMAS-21     | Matrix Fortification        | 40.0      | 38.8                    | 96.9                  | 38.9     | Mean = $97.0$      |
| VMAS-22     | Matrix Fortification        | 40.0      | 39.2                    | 98.1                  |          | Std. Dev. = $1.27$ |
| VMAS-23     | Matrix Fortification        | 40.0      | 39.1                    | 97.9                  |          | RSD = 1.31%        |
| VMAS-24     | Matrix Fortification        | 40.0      | 38.8                    | 97.0                  |          |                    |
| VMAS-25     | Matrix Fortification        | 40.0      | 38.0                    | 94.9                  |          |                    |
| VMAS-26     | Matrix Fortification        | 100       | 98.5                    | 98.5                  | 98.1     | Mean = $98.1$      |
| VMAS-27     | Matrix Fortification        | 100       | 99.9                    | 99.9                  |          | Std. Dev. = $1.28$ |
| VMAS-28     | Matrix Fortification        | 100       | 97.6                    | 97.6                  |          | RSD = 1.30%        |
| VMAS-29     | Matrix Fortification        | 100       | 98.2                    | 98.2                  |          |                    |
| VMAS-30     | Matrix Fortification        | 100       | 96.4                    | 96.4                  |          |                    |
|             |                             |           | Mean =                  | 95.7                  |          |                    |
|             |                             |           | Std. Dev.=              | 3.14                  |          |                    |
|             |                             |           | RSD =                   | 3.28%                 |          |                    |
|             |                             |           | N =                     | 15                    |          |                    |

The limit of quantitation (LOQ) was 5.00 µg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 17 Method Verification Recoveries of Dibenz(a,h)anthracene in Freshwater Analyzed by HPLC with Fluorescence Detection

|              | Sample                  | Concentr  | Concentration (µg/L)    |                       | Mean     | Mean % Recovery     |
|--------------|-------------------------|-----------|-------------------------|-----------------------|----------|---------------------|
| Number       |                         |           |                         | Percent               | Measured | Std. Dev.           |
| (472C-104-)  | Type                    | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)               |
| VREB-3       | Reagent Blank           | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VREB-4       | Reagent Blank           | 0.0       | < LOQ                   |                       |          |                     |
| VMAB-3       | Matrix Blank            | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VMAB-4       | Matrix Blank            | 0.0       | < LOQ                   |                       | LOQ      |                     |
| VMAC 16      | Matrix Fortification    | 10.0      | 0.22                    | 02.2                  | 0.21     | M 02.1              |
| VMAS-16      | Matrix Fortification    |           | 9.33<br>9.29            | 93.3                  | 9.21     | Mean = $92.1$       |
| VMAS-17      |                         | 10.0      |                         | 92.9                  |          | Std. Dev. = $2.67$  |
| VMAS-18      | Matrix Fortification    | 10.0      | 9.38                    | 93.8                  |          | RSD = 2.90%         |
| VMAS-19      | Matrix Fortification    | 10.0      | 8.74                    | 87.4                  |          |                     |
| VMAS-20      | Matrix Fortification    | 10.0      | 9.33                    | 93.3                  |          |                     |
| VMAS-21      | Matrix Fortification    | 40.0      | 39.2                    | 97.9                  | 38.9     | Mean = $97.3$       |
| VMAS-22      | Matrix Fortification    | 40.0      | 39.1                    | 97.8                  |          | Std. Dev. = $1.21$  |
| VMAS-23      | Matrix Fortification    | 40.0      | 39.0                    | 97.5                  |          | RSD = 1.24%         |
| VMAS-24      | Matrix Fortification    | 40.0      | 39.3                    | 98.2                  |          |                     |
| VMAS-25      | Matrix Fortification    | 40.0      | 38.1                    | 95.2                  |          |                     |
| VMAS-26      | Matrix Fortification    | 100       | 100                     | 100                   | 100      | Mean = 100          |
| VMAS-27      | Matrix Fortification    | 100       | 100                     | 100                   | 100      | Std. Dev. = $0.743$ |
| VMAS-28      | Matrix Fortification    | 100       | 101                     | 101                   |          | RSD = 0.743%        |
| VMAS-29      | Matrix Fortification    | 100       | 100                     | 100                   |          | RSD 0.74370         |
| VMAS-30      | Matrix Fortification    | 100       | 98.9                    | 98.9                  |          |                     |
| V 1V174.D-30 | TYTALITY I OTTITICATION | 100       |                         |                       |          |                     |
|              |                         |           | Mean =                  | 96.5                  |          |                     |
|              |                         |           | Std. Dev.=              | 3.74                  |          |                     |
|              |                         |           | RSD =                   | 3.88%                 |          |                     |
|              |                         |           | N =                     | 15                    |          |                     |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00 μg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 18 Method Verification Recoveries of Indeno(1,2,3-cd)pyrene in Freshwater Analyzed by HPLC with Fluorescence Detection

|             | Sample               |             | Concentration (µg/L)    |                       | Mean        | Mean % Recovery    |
|-------------|----------------------|-------------|-------------------------|-----------------------|-------------|--------------------|
| Number      |                      | <del></del> |                         | Percent               | Measured    | Std. Dev.          |
| (472C-104-) | Type                 | Fortified   | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | $(\mu g/L)$ | (RSD)              |
| VREB-3      | Reagent Blank        | 0.0         | < LOQ                   |                       | < LOQ       |                    |
| VREB-4      | Reagent Blank        | 0.0         | < LOQ                   |                       |             |                    |
| VMAB-3      | Matrix Blank         | 0.0         | < LOQ                   |                       | < LOQ       |                    |
| VMAB-4      | Matrix Blank         | 0.0         | < LOQ                   |                       |             |                    |
| VMAS-16     | Matrix Fortification | 10.0        | 9.45                    | 94.5                  | 9.41        | Mean = $94.1$      |
| VMAS-17     | Matrix Fortification | 10.0        | 9.38                    | 93.8                  |             | Std. Dev. = $1.63$ |
| VMAS-18     | Matrix Fortification | 10.0        | 9.56                    | 95.6                  |             | RSD = 1.74%        |
| VMAS-19     | Matrix Fortification | 10.0        | 9.15                    | 91.5                  |             |                    |
| VMAS-20     | Matrix Fortification | 10.0        | 9.53                    | 95.3                  |             |                    |
| VMAS-21     | Matrix Fortification | 40.0        | 39.2                    | 98.0                  | 39.1        | Mean = $97.6$      |
| VMAS-22     | Matrix Fortification | 40.0        | 39.7                    | 99.3                  |             | Std. Dev. = $1.42$ |
| VMAS-23     | Matrix Fortification | 40.0        | 39.4                    | 98.4                  |             | RSD = 1.45%        |
| VMAS-24     | Matrix Fortification | 40.0        | 38.4                    | 95.9                  |             |                    |
| VMAS-25     | Matrix Fortification | 40.0        | 38.6                    | 96.4                  |             |                    |
| VMAS-26     | Matrix Fortification | 100         | 99.0                    | 99.0                  | 98.6        | Mean = $98.6$      |
| VMAS-27     | Matrix Fortification | 100         | 101                     | 101                   |             | Std. Dev. $= 1.62$ |
| VMAS-28     | Matrix Fortification | 100         | 97.2                    | 97.2                  |             | RSD = 1.64%        |
| VMAS-29     | Matrix Fortification | 100         | 98.7                    | 98.7                  |             |                    |
| VMAS-30     | Matrix Fortification | 100         | 97.0                    | 97.0                  |             |                    |
|             |                      |             | Mean =                  | 96.8                  |             |                    |
|             |                      |             | Std. Dev.=              | 2.44                  |             |                    |
|             |                      |             | RSD =                   | 2.52%                 |             |                    |
|             |                      |             | N =                     | 15                    |             |                    |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00 μg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 19 Method Verification Recoveries of Benzo(g,h,i)perylene in Freshwater Analyzed by HPLC with Fluorescence Detection

| Sample      |                      | Concentr  | ation (µg/L)            |                       | Mean     | Mean % Recovery     |
|-------------|----------------------|-----------|-------------------------|-----------------------|----------|---------------------|
| Number      |                      |           |                         | Percent               | Measured | Std. Dev.           |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)               |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |          |                     |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ    |                     |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |          |                     |
| VMAS-16     | Matrix Fortification | 10.0      | 9.28                    | 92.8                  | 9.59     | Mean = $95.9$       |
| VMAS-17     | Matrix Fortification | 10.0      | 9.63                    | 96.3                  |          | Std. Dev. = $1.99$  |
| VMAS-18     | Matrix Fortification | 10.0      | 9.67                    | 96.7                  |          | RSD = 2.08%         |
| VMAS-19     | Matrix Fortification | 10.0      | 9.55                    | 95.5                  |          |                     |
| VMAS-20     | Matrix Fortification | 10.0      | 9.82                    | 98.2                  |          |                     |
| VMAS-21     | Matrix Fortification | 40.0      | 38.5                    | 96.3                  | 38.5     | Mean = $96.3$       |
| VMAS-22     | Matrix Fortification | 40.0      | 39.1                    | 97.7                  |          | Std. Dev. = $0.802$ |
| VMAS-23     | Matrix Fortification | 40.0      | 38.5                    | 96.2                  |          | RSD = 0.833%        |
| VMAS-24     | Matrix Fortification | 40.0      | 38.3                    | 95.8                  |          |                     |
| VMAS-25     | Matrix Fortification | 40.0      | 38.3                    | 95.7                  |          |                     |
| VMAS-26     | Matrix Fortification | 100       | 96.3                    | 96.3                  | 97.1     | Mean = $97.1$       |
| VMAS-27     | Matrix Fortification | 100       | 98.5                    | 98.5                  |          | Std. Dev. = $1.50$  |
| VMAS-28     | Matrix Fortification | 100       | 96.3                    | 96.3                  |          | RSD = 1.55%         |
| VMAS-29     | Matrix Fortification | 100       | 98.8                    | 98.8                  |          |                     |
| VMAS-30     | Matrix Fortification | 100       | 95.4                    | 95.4                  |          |                     |
|             |                      |           | Mean =                  | 96.4                  |          |                     |
|             |                      |           | Std. Dev.=              | 1.49                  |          |                     |
|             |                      |           | RSD =                   | 1.55%                 |          |                     |
|             |                      |           | N =                     | 15                    |          |                     |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00 μg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 20 Method Verification Recoveries of Dibenzo(a,e)pyrene in Freshwater Analyzed by HPLC with Fluorescence Detection

|             | Sample               | Concentr  | ation (µg/L)            |                       | Mean     | Mean % Recovery    |
|-------------|----------------------|-----------|-------------------------|-----------------------|----------|--------------------|
| Number      |                      |           |                         | Percent               | Measured | Std. Dev.          |
| (472C-104-) | Type                 | Fortified | Measured <sup>1,2</sup> | Recovery <sup>2</sup> | (µg/L)   | (RSD)              |
| VREB-3      | Reagent Blank        | 0.0       | < LOQ                   |                       | < LOQ    |                    |
| VREB-4      | Reagent Blank        | 0.0       | < LOQ                   |                       |          |                    |
| VMAB-3      | Matrix Blank         | 0.0       | < LOQ                   |                       | < LOQ    |                    |
| VMAB-4      | Matrix Blank         | 0.0       | < LOQ                   |                       |          |                    |
| VMAS-16     | Matrix Fortification | 10.0      | 9.26                    | 92.6                  | 9.33     | Mean = $93.3$      |
| VMAS-17     | Matrix Fortification | 10.0      | 9.28                    | 92.8                  |          | Std. Dev. = $2.34$ |
| VMAS-18     | Matrix Fortification | 10.0      | 9.55                    | 95.5                  |          | RSD = 2.51%        |
| VMAS-19     | Matrix Fortification | 10.0      | 8.99                    | 89.9                  |          |                    |
| VMAS-20     | Matrix Fortification | 10.0      | 9.55                    | 95.5                  |          |                    |
| VMAS-21     | Matrix Fortification | 40.0      | 38.4                    | 96.0                  | 38.5     | Mean = $96.3$      |
| VMAS-22     | Matrix Fortification | 40.0      | 39.5                    | 98.7                  |          | Std. Dev. = $1.73$ |
| VMAS-23     | Matrix Fortification | 40.0      | 38.4                    | 96.0                  |          | RSD = 1.79%        |
| VMAS-24     | Matrix Fortification | 40.0      | 37.6                    | 93.9                  |          |                    |
| VMAS-25     | Matrix Fortification | 40.0      | 38.7                    | 96.8                  |          |                    |
| VMAS-26     | Matrix Fortification | 100       | 99.7                    | 99.7                  | 99.1     | Mean = $99.1$      |
| VMAS-27     | Matrix Fortification | 100       | 101                     | 101                   |          | Std. Dev. = $1.36$ |
| VMAS-28     | Matrix Fortification | 100       | 98.0                    | 98.0                  |          | RSD = 1.38%        |
| VMAS-29     | Matrix Fortification | 100       | 99.1                    | 99.1                  |          |                    |
| VMAS-30     | Matrix Fortification | 100       | 97.6                    | 97.6                  |          |                    |
|             |                      |           | Mean =                  | 96.2                  |          |                    |
|             |                      |           | Std. Dev.=              | 2.95                  |          |                    |
|             |                      |           | RSD =                   | 3.07%                 |          |                    |
|             |                      |           | N =                     | 15                    |          |                    |

The limit of quantitation (LOQ) was 5.00 µg/L, calculated as the product of the concentration of the lowest standard (5.00 μg/L) and the dilution factor of the matrix blanks (1.00).

Results were generated using Excel 2000 in the full precision mode. Manual calculations may differ slightly.

Table 21

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Naphthalene in Samples

Collected from a Water Accommodated Fraction (WAF)

Equilibration Trial Analyzed by HPLC/UV

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 9.97          | 99.7                 |
|               | MAS-4             | 48       | 10.0          | 100                  |
|               | MAS-7             | 72       | 9.98          | 99.8                 |
|               | MAS-10            | 96       | 10.2          | 102                  |
| 40.0 MAS-2    |                   | 24       | 40.1          | 100                  |
|               | MAS-5             | 48       | 40.3          | 101                  |
|               | MAS-8             | 72       | 40.2          | 100                  |
|               | MAS-11            | 96       | 40.9          | 102                  |
| 100           | MAS-3             | 24       | 84.2          | 84.2                 |
|               | MAS-6             | 48       | 93.3          | 93.3                 |
|               | MAS-9             | 72       | 85.8          | 85.8                 |
|               | MAS-12            | 96       | 94.9          | 94.9                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 22

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Acenaphthylene in Samples
Collected from a Water Accommodated Fraction (WAF)
Equilibration Trial Analyzed by HPLC/UV

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.0          | 100                  |
|               | MAS-4             | 48       | 10.0          | 100                  |
|               | MAS-7             | 72       | 10.1          | 101                  |
|               | MAS-10            | 96       | 10.1          | 101                  |
| 40.0 MAS-2    |                   | 24       | 40.1          | 100                  |
|               | MAS-5             | 48       | 40.1          | 100                  |
|               | MAS-8             | 72       | 39.9          | 99.8                 |
|               | MAS-11            | 96       | 40.3          | 101                  |
| 100           | MAS-3             | 24       | 93.5          | 93.5                 |
|               | MAS-6             | 48       | 97.2          | 97.2                 |
|               | MAS-9             | 72       | 94.9          | 94.9                 |
|               | MAS-12            | 96       | 97.1          | 97.1                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration ( $5.00 \mu g/L$ ) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 23

Matrix Blanks, Matrix Fortifications and Measured Concentrations of 1-Methylnaphthalene in Samples

Collected from a Water Accommodated Fraction (WAF)

Equilibration Trial Analyzed by HPLC/UV

Sampling Nominal Sample Measured Percent Concentration Identification Interval Concentration of Nominal<sup>2</sup> (472C-104-) (Hour)  $(\mu g/L)^1$  $(\mu g/L)$ 0.0 MAB-1 24 < LOO MAB-2 48 < LOO MAB-3 72 < LOQ MAB-4 96 < LOO 10.0 MAS-1 24 10.0 100 MAS-4 48 10.1 101 MAS-7 72 9.99 99.9 **MAS-10** 96 10.2 102 40.0 MAS-2 24 40.1 100 MAS-5 48 40.2 100 MAS-8 72 40.2 100 MAS-11 96 40.8 102 100 MAS-3 24 84.8 84.8 MAS-6 48 93.4 93.4 MAS-9 72 86.3 86.3 MAS-12 96 94.2 94.2 1000000 1 (13.2-L bottle) 24 < LOQ 2 (4-L bottle) 24 < LOQ 3 (13.2-L bottle) 48 < LOQ 4 (4-L bottle) 48 < LOQ 5 (13.2-L bottle) 72 < LOQ 6 (4-L bottle) 72 < LOQ 7 (13.2-L bottle) 96 < LOQ 8 (4-L bottle) 96 < LOQ

The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration (5.00  $\mu g/L$ ) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 24

Matrix Blanks, Matrix Fortifications and Measured Concentrations of 2-Methylnaphthalene in Samples

Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 9.99          | 99.9                 |
|               | MAS-4             | 48       | 10.0          | 100                  |
|               | MAS-7             | 72       | 10.0          | 100                  |
|               | MAS-10            | 96       | 10.2          | 102                  |
| 40.0 MAS-2    |                   | 24       | 40.2          | 100                  |
|               | MAS-5             | 48       | 40.2          | 100                  |
|               | MAS-8             | 72       | 40.3          | 101                  |
|               | MAS-11            | 96       | 40.9          | 102                  |
| 100           | MAS-3             | 24       | 81.6          | 81.6                 |
|               | MAS-6             | 48       | 91.8          | 91.8                 |
|               | MAS-9             | 72       | 84.2          | 84.2                 |
|               | MAS-12            | 96       | 93.1          | 93.1                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 25

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Fluorene in Samples
Collected from a Water Accommodated Fraction (WAF)
Equilibration Trial Analyzed by HPLC/UV

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.1          | 101                  |
|               | MAS-4             | 48       | 9.62          | 96.2                 |
|               | MAS-7             | 72       | 9.97          | 99.7                 |
|               | MAS-10            | 96       | 9.96          | 99.6                 |
| 40.0 MAS-2    |                   | 24       | 40.3          | 101                  |
|               | MAS-5             | 48       | 39.8          | 99.4                 |
|               | MAS-8             | 72       | 40.0          | 100                  |
|               | MAS-11            | 96       | 40.2          | 101                  |
| 100           | MAS-3             | 24       | 93.7          | 93.7                 |
|               | MAS-6             | 48       | 97.2          | 97.2                 |
|               | MAS-9             | 72       | 94.8          | 94.8                 |
|               | MAS-12            | 96       | 95.5          | 95.5                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

The limit of quantitation (LOQ) was 5.00 μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 26

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Acenaphthene in Samples
Collected from a Water Accommodated Fraction (WAF)
Equilibration Trial Analyzed by HPLC/UV

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 9.91          | 99.1                 |
|               | MAS-4             | 48       | 10.0          | 100                  |
|               | MAS-7             | 72       | 10.1          | 101                  |
|               | MAS-10            | 96       | 10.1          | 101                  |
| 40.0 MAS-2    |                   | 24       | 40.0          | 100                  |
|               | MAS-5             | 48       | 40.0          | 100                  |
|               | MAS-8             | 72       | 40.0          | 100                  |
|               | MAS-11            | 96       | 40.5          | 101                  |
| 100           | MAS-3             | 24       | 91.4          | 91.4                 |
|               | MAS-6             | 48       | 96.7          | 96.7                 |
|               | MAS-9             | 72       | 92.4          | 92.4                 |
|               | MAS-12            | 96       | 96.0          | 96.0                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00 μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 27

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Phenanthrene in Samples
Collected from a Water Accommodated Fraction (WAF)
Equilibration Trial Analyzed by HPLC/UV

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.1          | 101                  |
|               | MAS-4             | 48       | 9.99          | 99.9                 |
|               | MAS-7             | 72       | 10.2          | 102                  |
|               | MAS-10            | 96       | 10.0          | 100                  |
| 40.0 MAS-2    |                   | 24       | 40.1          | 100                  |
|               | MAS-5             | 48       | 39.7          | 99.3                 |
|               | MAS-8             | 72       | 39.7          | 99.3                 |
|               | MAS-11            | 96       | 40.1          | 100                  |
| 100           | MAS-3             | 24       | 95.1          | 95.1                 |
|               | MAS-6             | 48       | 97.2          | 97.2                 |
|               | MAS-9             | 72       | 92.2          | 92.2                 |
|               | MAS-12            | 96       | 95.0          | 95.0                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 28 Matrix Blanks, Matrix Fortifications and Measured Concentrations of Anthracene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.1          | 101                  |
|               | MAS-4             | 48       | 9.98          | 99.8                 |
|               | MAS-7             | 72       | 10.1          | 101                  |
|               | MAS-10            | 96       | 10.1          | 101                  |
| 40.0 MAS-2    |                   | 24       | 40.6          | 101                  |
|               | MAS-5             | 48       | 39.9          | 99.6                 |
|               | MAS-8             | 72       | 39.9          | 99.8                 |
|               | MAS-11            | 96       | 40.2          | 101                  |
| 100           | MAS-3             | 24       | 94.2          | 94.2                 |
|               | MAS-6             | 48       | 96.6          | 96.6                 |
|               | MAS-9             | 72       | 90.3          | 90.3                 |
|               | MAS-12            | 96       | 94.2          | 94.2                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00  $\mu$ g/L) and the dilution factor of the matrix blank samples (1.00). <sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ

slightly.

Table 29 Matrix Blanks, Matrix Fortifications and Measured Concentrations of Fluoranthene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.3          | 103                  |
|               | MAS-4             | 48       | 0.00          | 99.8                 |
|               | MAS-7             | 72       | 9.98          | 102                  |
|               | MAS-10            | 96       | 10.2          | 103                  |
|               |                   |          | 10.3          |                      |
| 40.0 MAS-2    |                   | 24       | 40.0          | 100                  |
|               | MAS-5             | 48       | 39.1          | 97.6                 |
|               | MAS-8             | 72       | 39.4          | 98.4                 |
|               | MAS-11            | 96       | 40.0          | 99.9                 |
| 100           | MAS-3             | 24       | 93.3          | 93.3                 |
|               | MAS-6             | 48       | 96.2          | 96.2                 |
|               | MAS-9             | 72       | 82.1          | 82.1                 |
|               | MAS-12            | 96       | 95.4          | 95.4                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00  $\mu$ g/L) and the dilution factor of the matrix blank samples (1.00). <sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ

slightly.

Table 30

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Pyrene in Samples

Collected from a Water Accommodated Fraction (WAF)

Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.2          | 102                  |
|               | MAS-4             | 48       | 10.1          | 101                  |
|               | MAS-7             | 72       | 9.92          | 99.2                 |
|               | MAS-10            | 96       | 10.2          | 102                  |
| 40.0 MAS-2    |                   | 24       | 39.6          | 99.1                 |
|               | MAS-5             | 48       | 39.5          | 98.8                 |
|               | MAS-8             | 72       | 38.7          | 96.9                 |
|               | MAS-11            | 96       | 39.6          | 99.1                 |
| 100           | MAS-3             | 24       | 91.6          | 91.6                 |
|               | MAS-6             | 48       | 96.7          | 96.7                 |
|               | MAS-9             | 72       | 80.0          | 80.0                 |
|               | MAS-12            | 96       | 94.4          | 94.4                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration ( $5.00 \mu g/L$ ) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 31

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Chrysene in Samples

Collected from a Water Accommodated Fraction (WAF)

Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.2          | 102                  |
|               | MAS-4             | 48       | 10.1          | 101                  |
|               | MAS-7             | 72       | 10.2          | 102                  |
|               | MAS-10            | 96       | 9.88          | 98.8                 |
| 40.0 MAS-2    |                   | 24       | 39.5          | 98.6                 |
|               | MAS-5             | 48       | 39.0          | 97.5                 |
|               | MAS-8             | 72       | 39.3          | 98.2                 |
|               | MAS-11            | 96       | 39.9          | 99.7                 |
| 100           | MAS-3             | 24       | 100           | 100                  |
|               | MAS-6             | 48       | 98.6          | 98.6                 |
|               | MAS-9             | 72       | 95.8          | 95.8                 |
|               | MAS-12            | 96       | 104           | 104                  |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration (5.00  $\mu g/L$ ) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 32

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benz(a)anthracene in Samples
Collected from a Water Accommodated Fraction (WAF)
Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| (µg/L)        | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.5          | 105                  |
|               | MAS-4             | 48       | 10.1          | 101                  |
|               | MAS-7             | 72       | 10.4          | 104                  |
|               | MAS-10            | 96       | 10.2          | 102                  |
| 40.0 MAS-2    |                   | 24       | 39.1          | 97.7                 |
|               | MAS-5             | 48       | 37.9          | 94.9                 |
|               | MAS-8             | 72       | 38.2          | 95.5                 |
|               | MAS-11            | 96       | 38.9          | 97.2                 |
| 100           | MAS-3             | 24       | 96.0          | 96.0                 |
|               | MAS-6             | 48       | 95.3          | 95.3                 |
|               | MAS-9             | 72       | 87.5          | 87.5                 |
|               | MAS-12            | 96       | 98.2          | 98.2                 |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration ( $5.00 \mu g/L$ ) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 33

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(b)fluoranthene in Samples

Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal        | Sample            | Sampling | Measured      | Percent              |
|----------------|-------------------|----------|---------------|----------------------|
| Concentration  | Identification    | Interval | Concentration | of                   |
| $\mu$ g/L)     | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1      |                   | 24       | < LOQ         |                      |
|                | MAB-2             | 48       | < LOQ         |                      |
|                | MAB-3             | 72       | < LOQ         |                      |
|                | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1     |                   | 24       | 10.5          | 105                  |
| 10.0 1.11 10 1 | MAS-4             | 48       | 9.58          | 95.8                 |
|                | MAS-7             | 72       | 10.3          | 103                  |
|                | MAS-10            | 96       | 10.1          | 101                  |
| 40.0 MAS-2     |                   | 24       | 39.4          | 98.6                 |
| 40.0 MAS-2     | MAS-5             | 48       | 37.3          | 93.3                 |
|                | MAS-8             | 72       | 38.9          | 97.3                 |
|                | MAS-11            | 96       | 38.5          | 96.3                 |
|                | 1411.0 11         | 70       | 30.5          | 70.5                 |
| 100            | MAS-3             | 24       | 93.6          | 93.6                 |
|                | MAS-6             | 48       | 95.1          | 95.1                 |
|                | MAS-9             | 72       | 85.2          | 85.2                 |
|                | MAS-12            | 96       | 98.0          | 98.0                 |
| 1000000        | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
| 100000         | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|                | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|                | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|                | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|                | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|                | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|                | 8 (4-L bottle)    | 96       | < LOQ         |                      |

The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 34

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(k)fluoranthene in Samples

Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.1          | 101                  |
|               | MAS-4             | 48       | 9.91          | 99.1                 |
|               | MAS-7             | 72       | 10.2          | 102                  |
|               | MAS-10            | 96       | 9.82          | 98.2                 |
| 40.0 MAS-2    |                   | 24       | 39.5          | 98.7                 |
|               | MAS-5             | 48       | 38.7          | 96.8                 |
|               | MAS-8             | 72       | 39.1          | 97.7                 |
|               | MAS-11            | 96       | 39.4          | 98.5                 |
| 100           | MAS-3             | 24       | 99.6          | 99.6                 |
|               | MAS-6             | 48       | 98.1          | 98.1                 |
|               | MAS-9             | 72       | 95.8          | 95.8                 |
|               | MAS-12            | 96       | 102           | 102                  |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 35

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(a)pyrene in Samples
Collected from a Water Accommodated Fraction (WAF)
Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.3          | 103                  |
|               | MAS-4             | 48       | 9.83          | 98.3                 |
|               | MAS-7             | 72       | 10.3          | 103                  |
|               | MAS-10            | 96       | 9.98          | 99.8                 |
| 40.0 MAS-2    |                   | 24       | 39.4          | 98.5                 |
|               | MAS-5             | 48       | 38.6          | 96.5                 |
|               | MAS-8             | 72       | 38.8          | 97.1                 |
|               | MAS-11            | 96       | 39.2          | 98.0                 |
| 100           | MAS-3             | 24       | 98.2          | 98.2                 |
|               | MAS-6             | 48       | 97.9          | 97.9                 |
|               | MAS-9             | 72       | 93.3          | 93.3                 |
|               | MAS-12            | 96       | 100           | 100                  |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration ( $5.00 \mu g/L$ ) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in ful precision mode. Manual calculations may differ slightly.

Table 36

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Dibenz(a,h)anthracene in Samples

Collected from a Water Accommodated Fraction (WAF)

Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.1          | 101                  |
|               | MAS-4             | 48       | 10.1          | 101                  |
|               | MAS-7             | 72       | 10.3          | 103                  |
|               | MAS-10            | 96       | 9.88          | 98.8                 |
| 40.0 MAS-2    |                   | 24       | 39.5          | 98.7                 |
|               | MAS-5             | 48       | 39.0          | 97.5                 |
|               | MAS-8             | 72       | 39.2          | 97.9                 |
|               | MAS-11            | 96       | 39.4          | 98.6                 |
| 100           | MAS-3             | 24       | 99.8          | 99.8                 |
|               | MAS-6             | 48       | 99.4          | 99.4                 |
|               | MAS-9             | 72       | 97.9          | 97.9                 |
|               | MAS-12            | 96       | 103           | 103                  |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         | <u></u> _            |

The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration ( $5.00 \mu g/L$ ) and the dilution factor of the matrix blank samples (1.00).

concentration (5.00  $\mu$ g/L) and the dilution factor of the matrix blank samples (1.00). <sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 37

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Indeno(1,2,3-cd)pyrene in Samples

Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC/UV

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.2          | 102                  |
|               | MAS-4             | 48       | 9.67          | 96.7                 |
|               | MAS-7             | 72       | 10.2          | 102                  |
|               | MAS-10            | 96       | 10.0          | 100                  |
| 40.0 MAS-2    |                   | 24       | 39.5          | 98.7                 |
|               | MAS-5             | 48       | 38.1          | 95.4                 |
|               | MAS-8             | 72       | 39.2          | 98.0                 |
|               | MAS-11            | 96       | 39.0          | 97.5                 |
| 100           | MAS-3             | 24       | 98.3          | 98.3                 |
|               | MAS-6             | 48       | 97.2          | 97.2                 |
|               | MAS-9             | 72       | 93.7          | 93.7                 |
|               | MAS-12            | 96       | 100           | 100                  |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00 μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

concentration (5.00  $\mu$ g/L) and the dilution factor of the matrix blank samples (1.00). <sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 38

Matrix Blanks, Matrix Fortifications and Measured Concentrations of Benzo(g,h,i)perylene in Samples

Collected from a Water Accommodated Fraction (WAF)

Equilibration Trial Analyzed by HPLC with Fluorescence Detection

Nominal Sample Sampling Measured Percent Concentration Identification Interval Concentration of Nominal<sup>2</sup> (472C-104-) (Hour)  $(\mu g/L)^1$  $(\mu g/L)$ 0.0 MAB-1 24 < LOO MAB-2 48 < LOO MAB-3 72 < LOQ MAB-4 96 < LOO 10.0 MAS-1 24 10.3 103 MAS-4 48 9.95 99.5 MAS-7 72 10.2 102 **MAS-10** 96 10.2 102 40.0 MAS-2 24 39.3 98.2 MAS-5 48 38.2 95.6 MAS-8 72 38.9 97.2 MAS-11 96 39.1 97.7 100 MAS-3 24 94.6 94.6 MAS-6 48 96.2 96.2 MAS-9 72 91.5 91.5 MAS-12 96 98.9 98.9 1000000 1 (13.2-L bottle) 24 < LOQ 2 (4-L bottle) 24 < LOQ 3 (13.2-L bottle) 48 < LOQ 4 (4-L bottle) 48 < LOQ 5 (13.2-L bottle) 72 < LOQ 6 (4-L bottle) 72 < LOQ 7 (13.2-L bottle) 96 < LOQ 8 (4-L bottle) 96 < LOQ

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was  $5.00\mu g/L$ , calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

<sup>&</sup>lt;sup>2</sup> Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 39 Matrix Blanks, Matrix Fortifications and Measured Concentrations of Dibenzo(a,e)pyrene in Samples Collected from a Water Accommodated Fraction (WAF) Equilibration Trial Analyzed by HPLC with Fluorescence Detection

| Nominal       | Sample            | Sampling | Measured      | Percent              |
|---------------|-------------------|----------|---------------|----------------------|
| Concentration | Identification    | Interval | Concentration | of                   |
| $(\mu g/L)$   | (472C-104-)       | (Hour)   | $(\mu g/L)^1$ | Nominal <sup>2</sup> |
| 0.0 MAB-1     |                   | 24       | < LOQ         |                      |
|               | MAB-2             | 48       | < LOQ         |                      |
|               | MAB-3             | 72       | < LOQ         |                      |
|               | MAB-4             | 96       | < LOQ         |                      |
| 10.0 MAS-1    |                   | 24       | 10.2          | 102                  |
|               | MAS-4             | 48       | 0.72          | 97.2                 |
|               | MAS-7             | 72       | 9.72          | 102                  |
|               | MAS-10            | 96       | 10.2          | 99.4                 |
|               |                   |          | 9.94          |                      |
| 40.0 MAS-2    |                   | 24       | 39.3          | 98.2                 |
|               | MAS-5             | 48       | 38.4          | 95.9                 |
|               | MAS-8             | 72       | 39.0          | 97.6                 |
|               | MAS-11            | 96       | 39.3          | 98.3                 |
| 100           | MAS-3             | 24       | 98.5          | 98.5                 |
|               | MAS-6             | 48       | 98.0          | 98.0                 |
|               | MAS-9             | 72       | 94.6          | 94.6                 |
|               | MAS-12            | 96       | 102           | 102                  |
| 1000000       | 1 (13.2-L bottle) | 24       | < LOQ         |                      |
|               | 2 (4-L bottle)    | 24       | < LOQ         |                      |
|               | 3 (13.2-L bottle) | 48       | < LOQ         |                      |
|               | 4 (4-L bottle)    | 48       | < LOQ         |                      |
|               | 5 (13.2-L bottle) | 72       | < LOQ         |                      |
|               | 6 (4-L bottle)    | 72       | < LOQ         |                      |
|               | 7 (13.2-L bottle) | 96       | < LOQ         |                      |
|               | 8 (4-L bottle)    | 96       | < LOQ         |                      |

<sup>&</sup>lt;sup>1</sup> The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ

slightly.

## FLOWCHART FOR THE ANALYSIS OF WATER SOLUBLE PAH COMPONENTS OF PETROLEUM COKE IN FRESHWATER

Prepare samples in freshwater using volumetric flasks, volumetric pipettes, gas tight syringes and culture tubes. Freshwater served as the matrix blanks and bottled water served as the reagent blanks.

 $\downarrow$ 

For the WAF trial, samples were centrifuged at 14,000 rpm for approximately 5 minutes.

Dilute samples, as necessary, with freshwater such that the final sample concentrations fall within the calibration standard range.

 $\downarrow$ 

Transfer samples and standards to autosampler vials for analysis by either HPLC/UV or fluorescence detection.

Figure 1. Analytical method flowchart for the analysis of PAH components in freshwater by HPLC.

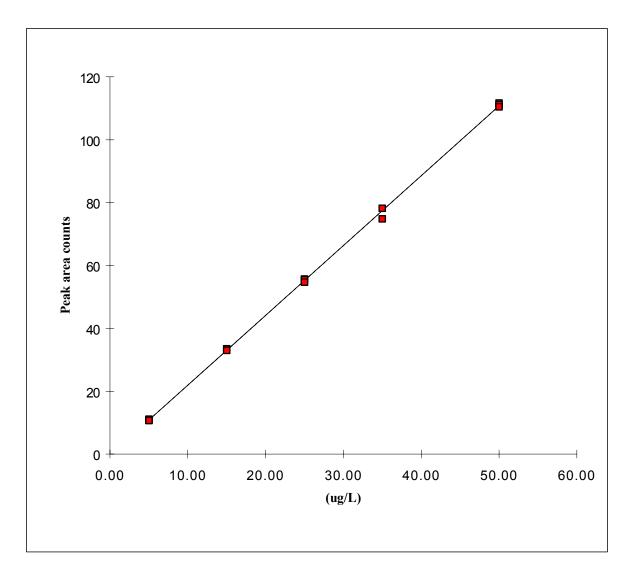



Figure 2. Calibration curve for Naphthalene analyzed by HPLC/UV. Slope = 2.2220; Intercept = -0.3549;  $R^2 = 0.9995$ .

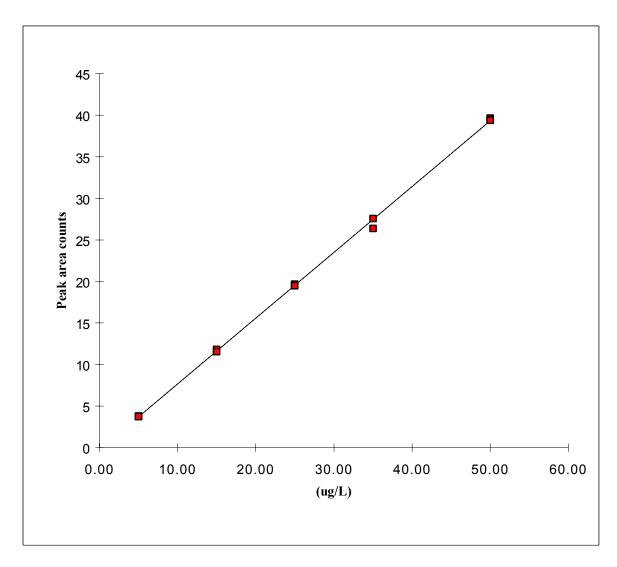



Figure 3. Calibration curve for Acenaphthylene analyzed by HPLC/UV. Slope = 0.7908; Intercept = -0.2349;  $R^2 = 0.9994$ .

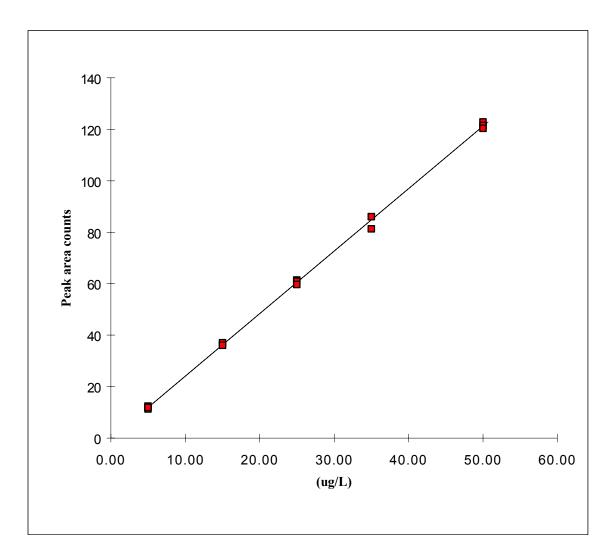



Figure 4. Calibration curve for 1-Methylnaphthalene analyzed by HPLC/UV. Slope = 2.4290; Intercept = -0.2359;  $R^2 = 0.9990$ .

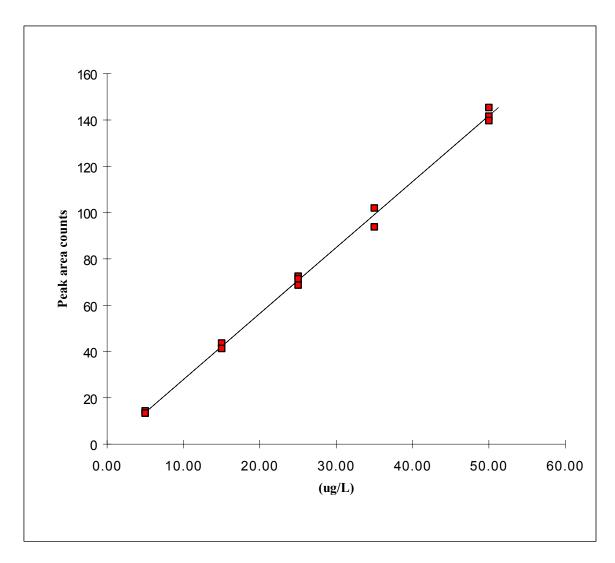



Figure 5. Calibration curve for 2-Methylnaphthalene analyzed by HPLC/UV. Slope = 2.8463; Intercept = -0.4854;  $R^2 = 0.9977$ .

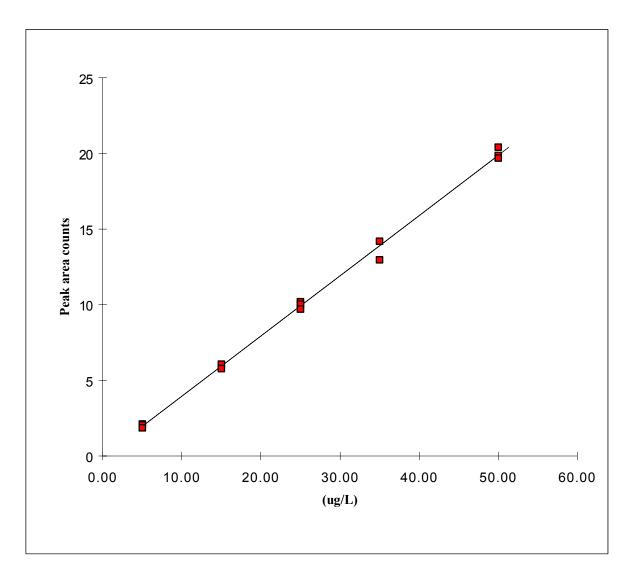



Figure 6. Calibration curve for Fluorene analyzed by HPLC/UV. Slope = 0.3979; Intercept = -0.0264;  $R^2 = 0.9973$ .

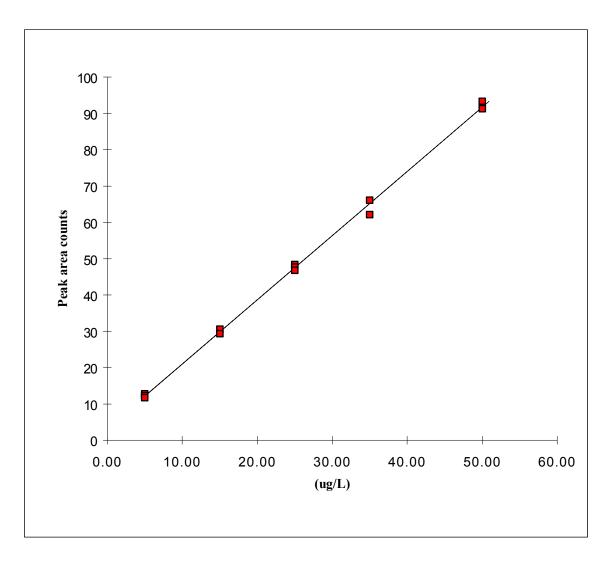
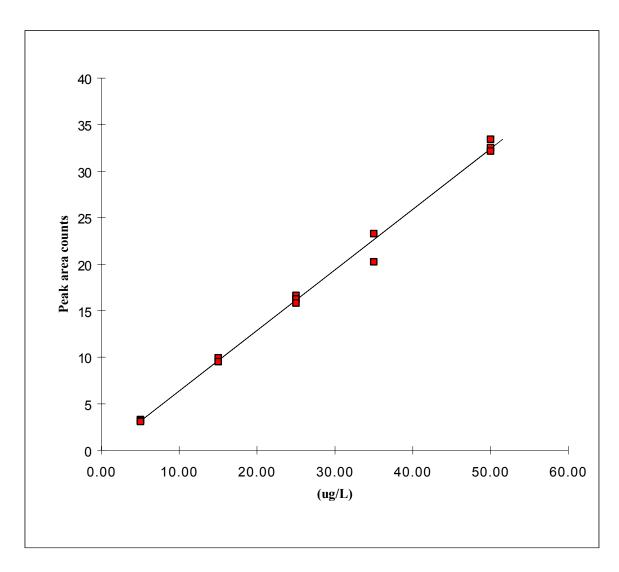




Figure 7. Calibration curve for Acenaphthene analyzed by HPLC/UV. Slope = 1.7666; Intercept = 3.3210;  $R^2 = 0.9986$ .



**Figure 8.** Calibration curve for Phenanthrene analyzed by HPLC/UV. Slope = 0.6505; Intercept = -0.1268;  $R^2 = 0.9947$ .

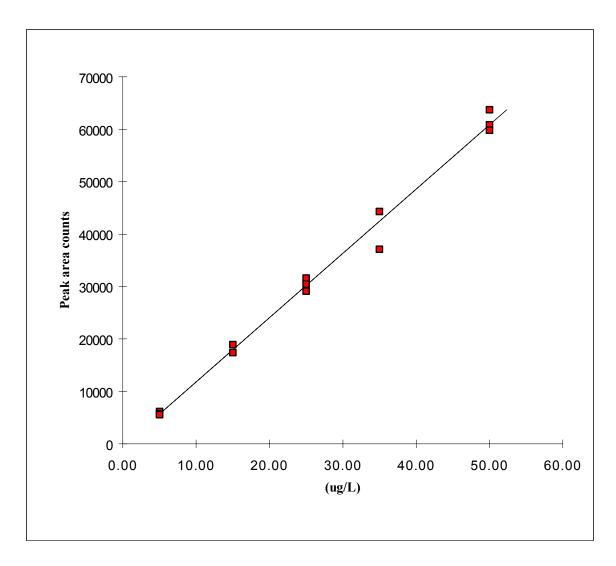



Figure 9. Calibration curve for Anthracene analyzed by HPLC/UV. Slope = 1226.1033; Intercept = -478.7707;  $R^2 = 0.9912$ .

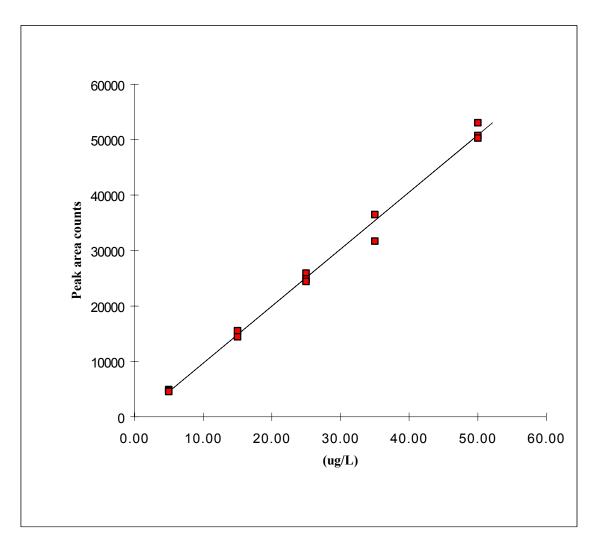
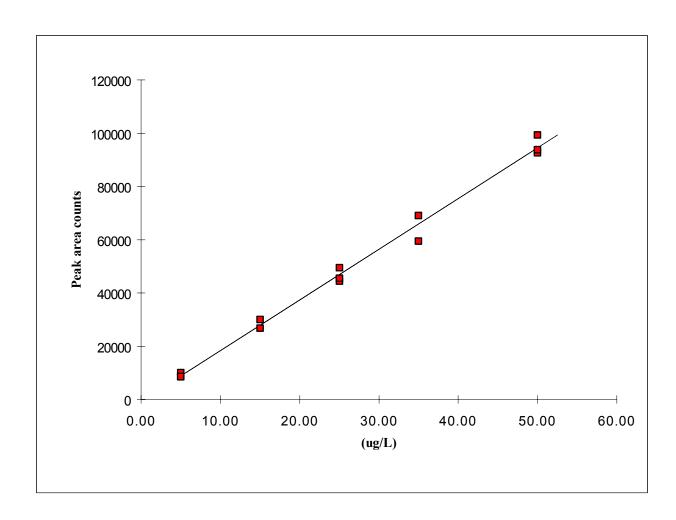




Figure 10. Calibration curve for Fluoranthene analyzed by HPLC with fluorescence detection. Slope = 1028.8562; Intercept = -619.9091;  $R^2 = 0.9940$ .



**Figure 11.** Calibration curve for Pyrene analyzed by HPLC with fluorescence detection. Slope = 1903.6239; Intercept = -731.9500;  $R^2 = 0.9920$ .

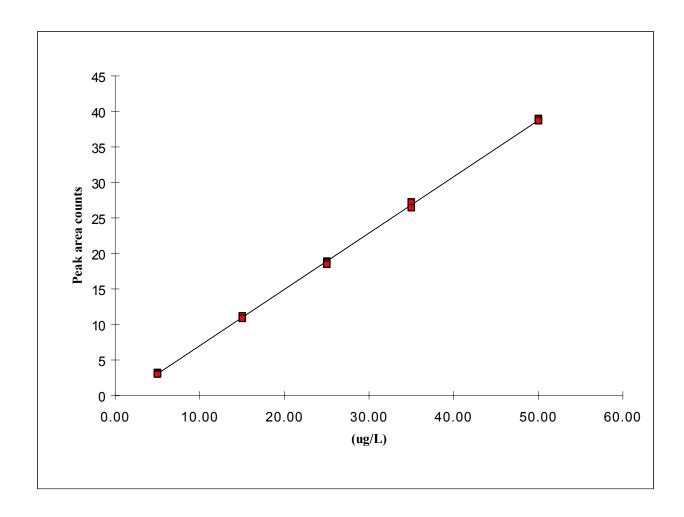
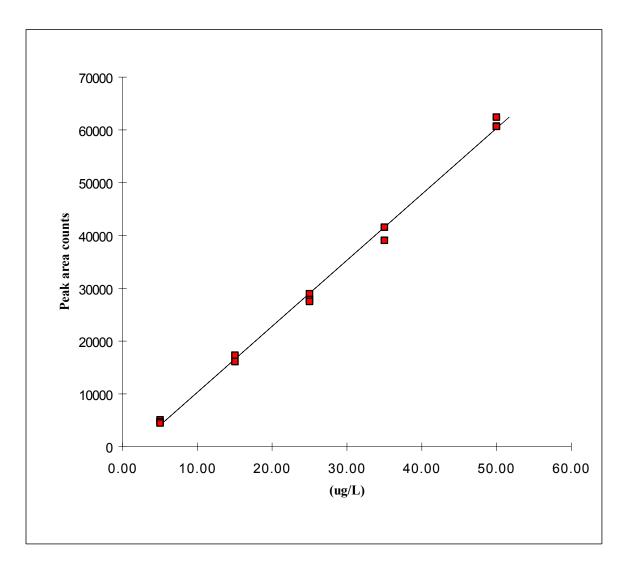
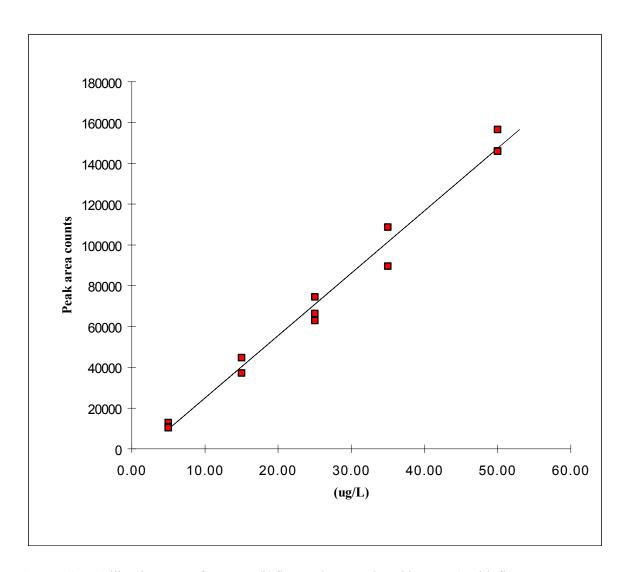
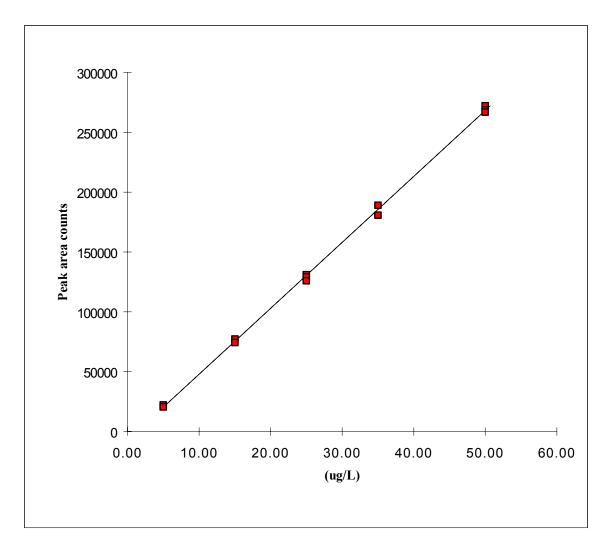
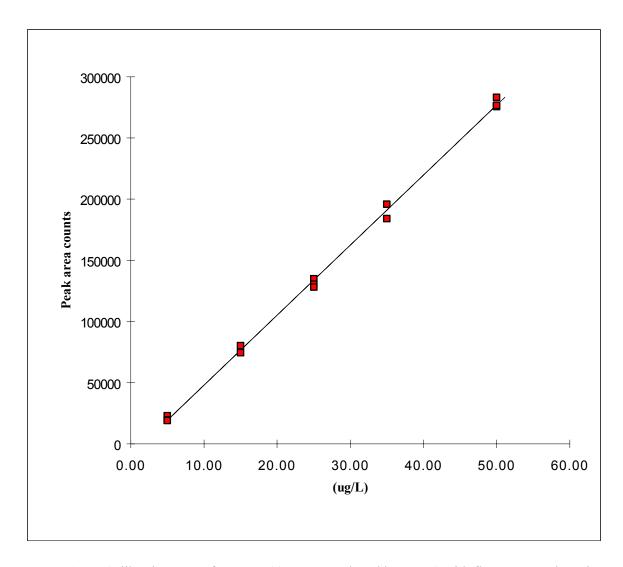



Figure 12. Calibration curve for Chrysene analyzed by HPLC/UV. Slope = 0.7935; Intercept = -0.9282;  $R^2 = 0.9997$ .



Figure 13. Calibration curve for Benz(a)anthracene analyzed by HPLC with fluorescence detection. Slope = 1250.4635; Intercept = -2198.3155;  $R^2 = 0.9968$ .



**Figure 14.** Calibration curve for Benzo(b)fluoranthene analyzed by HPLC with fluorescence detection. Slope = 3060.8384; Intercept = -5672.1194;  $R^2 = 0.9871$ .



**Figure 15.** Calibration curve for Benzo(k)fluoroanthene analyzed by HPLC with fluorescence detection. Slope = 5507.4417; Intercept = -7239.2283;  $R^2 = 0.9992$ .



**Figure 16.** Calibration curve for Benzo(a)pyrene analyzed by HPLC with fluorescence detection. Slope = 5726.8197; Intercept = -9335.3924;  $R^2 = 0.9983$ .

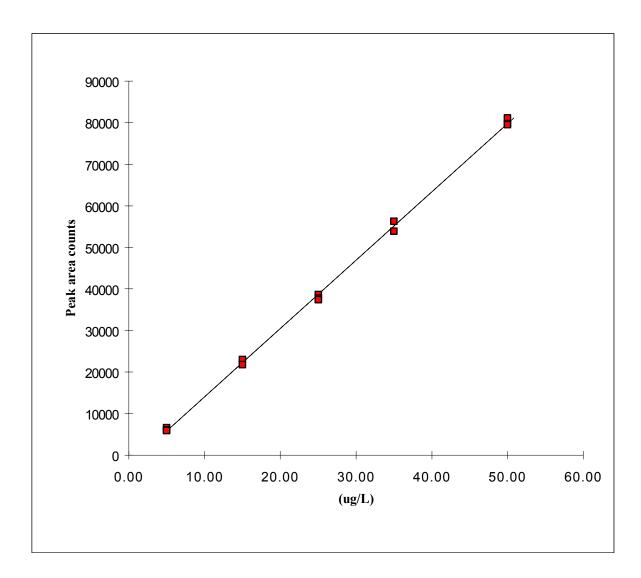
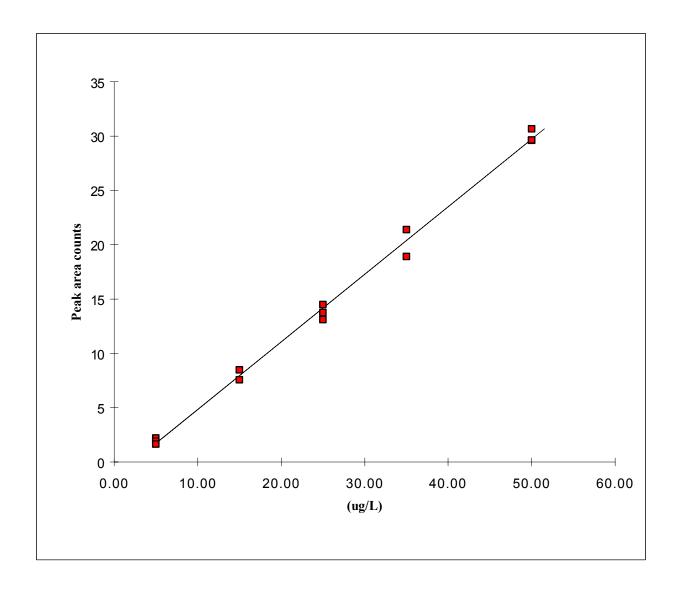
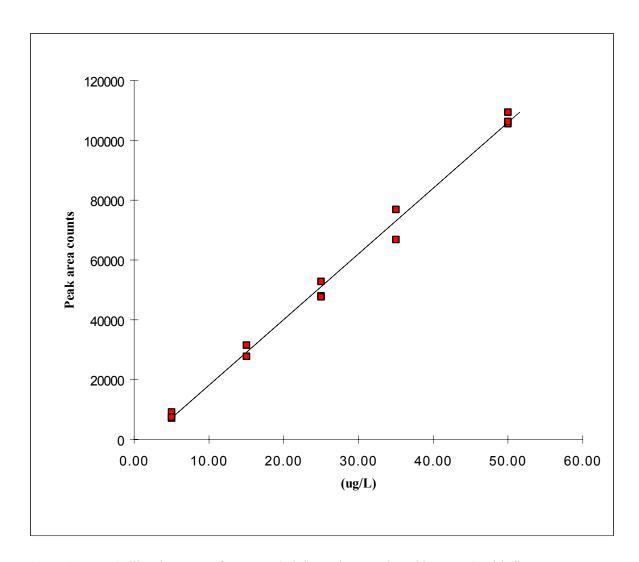
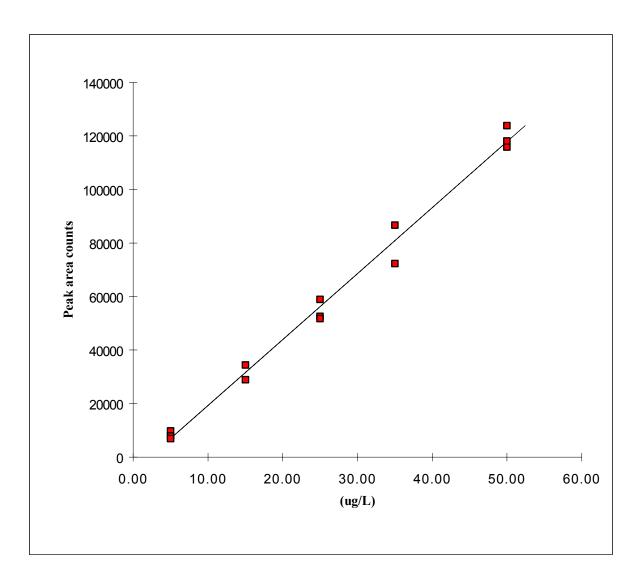
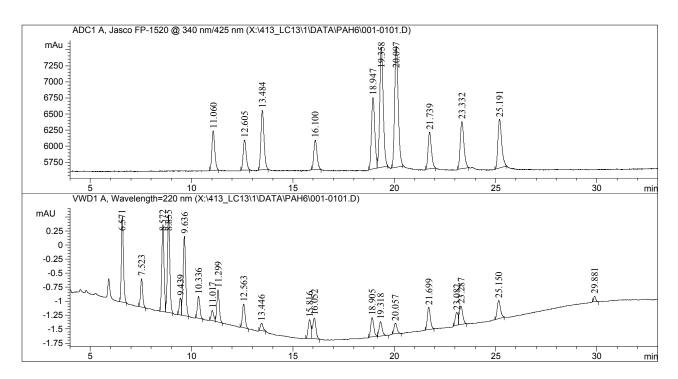
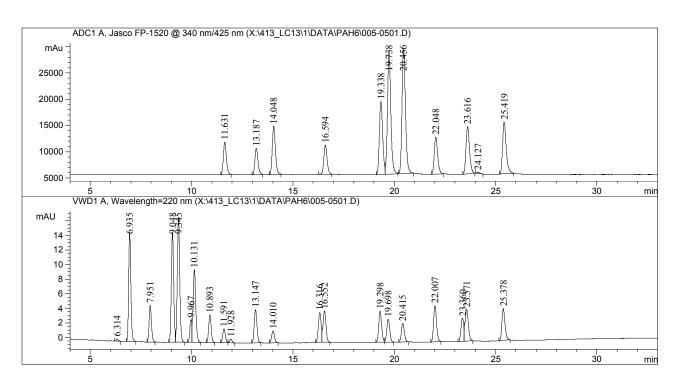




Figure 17. Calibration curve for Dibenz(a,h)anthracene analyzed by HPLC with fluorescence detection. Slope = 1643.6430; Intercept = -2368.5919;  $R^2 = 0.9991$ .



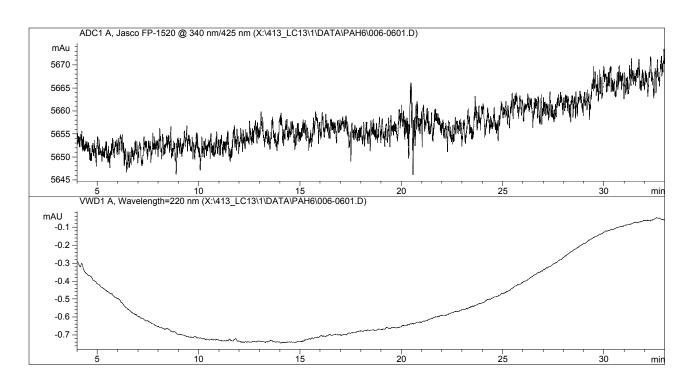
**Figure 18.** Calibration curve for Indeno(1,2,3-cd)pyrene analyzed by HPLC/UV. Slope = 0.6221; Intercept = -1.3937;  $R^2 = 0.9954$ .

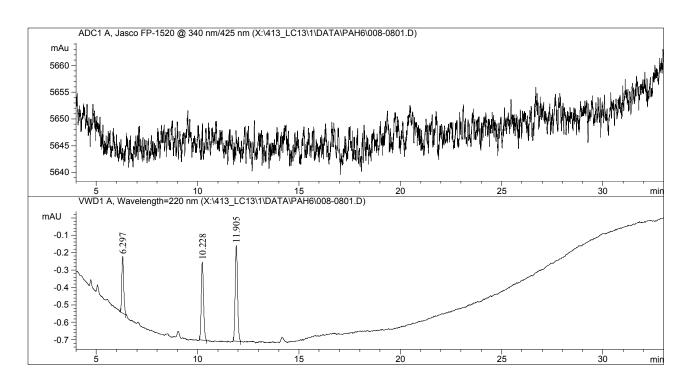


Figure 19. Calibration curve for Benzo(g,h,i)perylene analyzed by HPLC with fluorescence detection. Slope = 2196.2936; Intercept = -3845.0455;  $R^2 = 0.9940$ .



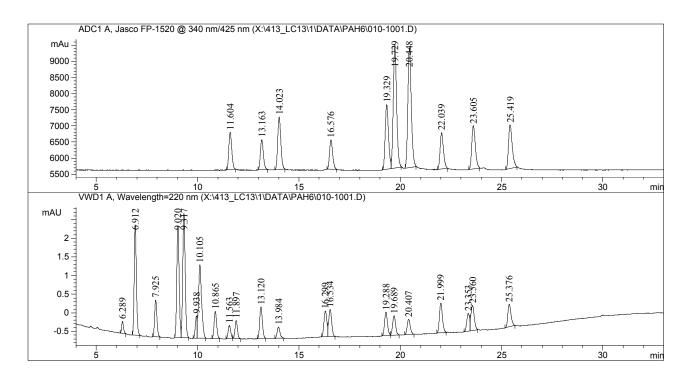
**Figure 20.** Calibration curve for Dibenzo(a,e)pyrene analyzed by HPLC with fluorescence detection. Slope = 2464.2422; Intercept = -5373.3490;  $R^2 = 0.9900$ .



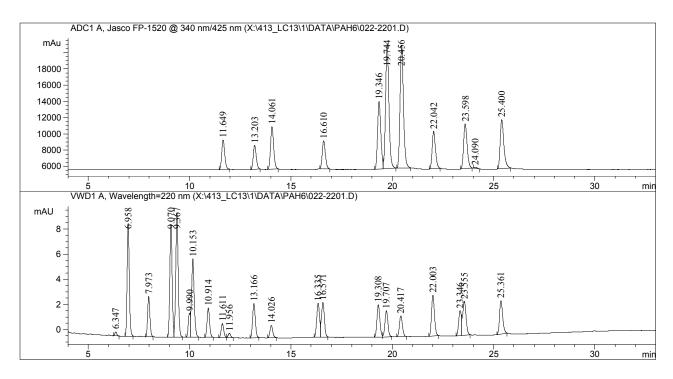

**Figure 21**. Representative chromatograms of a low-level (5.00  $\mu$ g/L) calibration standard analyzed by HPLC/UV and fluorescence detection.



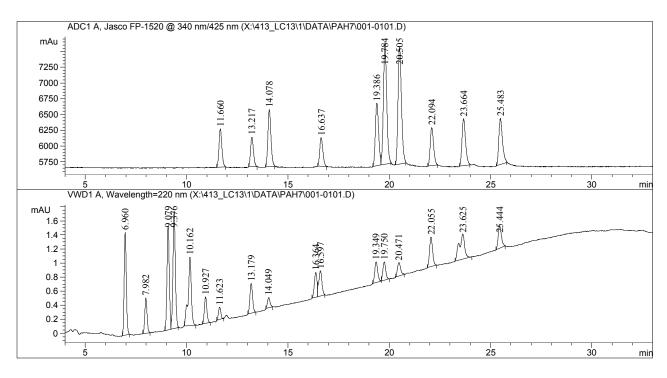

**Figure 22**. Representative chromatograms of a high-level ( $50.0 \,\mu\text{g/L}$ ) calibration standard analyzed by HPLC/UV and fluorescence detection.


.

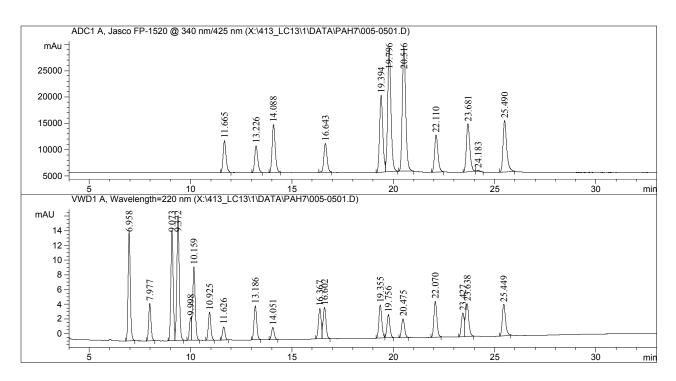



**Figure 23**. Representative chromatogram of a reagent blank, 472C-104-VREB-3 analyzed by HPLC/UV and fluorescence detection.



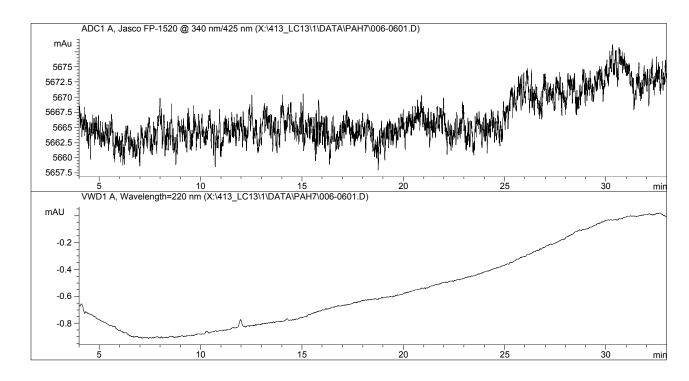

**Figure 24**. Representative chrom atograms of a m atrix blank, 472C-104-VMAB-3, analy zed by HPLC/UV and fluorescence detection.



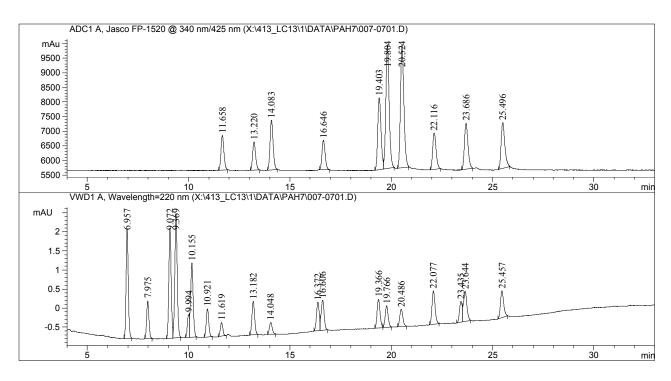

**Figure 25.** Representative chromatograms of a low-level m atrix fortification, 472C-104-VMAS-16 (10.0 µg/L, nominal concentration) analyzed by HPLC/UV and fluorescence detection.



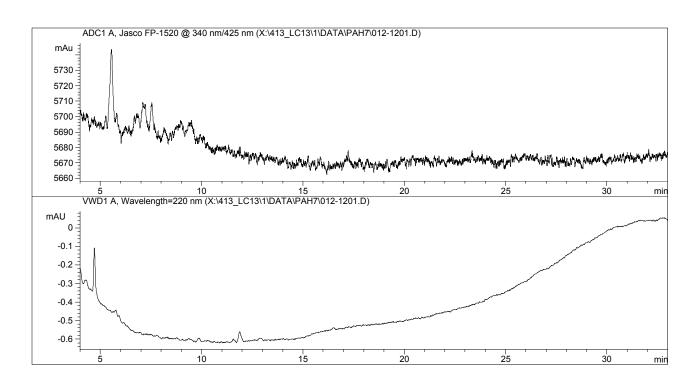
**Figure 26.** Representative chrom atograms of a high-level m atrix fortification, 472C-104-VMAS-26 (100  $\mu$ g/L, nominal concentration) analyzed by HPLC/UV and fluorescence detection.




**Figure 27**. Representative chrom atograms for the WAF trial of a low-level (5.00  $\mu$ g/L) calibration standard analyzed by HPLC/UV and fluorescence detection.




**Figure 28**. Representative chromatograms for the WAF trial of a high-level  $(50.0 \mu g/L)$  calibration standard analyzed by HPLC/UV and fluorescence detection.


.



**Figure 29**. Representative chromatograms for the WAF trial of a m atrix blank, 472C-104-MAB-1, analyzed by HPLC/UV and fluorescence detection.



**Figure 30**. Representative chromatograms for the WAF trial of a natrix fortification, 472C-104-MAS-1, nominal concentration 10.0 μg/L, analyzed by HPLC/UV and fluorescence detection.



**Figure 31.** Representative chrom atograms for the WAF trial of a 24 hour test sample, 472C-104-2 (1000 mg/L, nominal concentration) analyzed by HPLC/UV and fluorescence detection.

- 93 -

Appendix 1

Specific Conductance, Hardness, Alkalinity and pH of Well Water Measured

During the 4-Week Period Immediately Preceding the Freshwater Verification Test

|                                         | Mean        | Range     |
|-----------------------------------------|-------------|-----------|
| Specific Conductance (µmhos/cm)         | 321 (N = 4) | 320 – 325 |
| Hardness (mg/L as CaC0 <sub>3</sub> )   | 125 (N = 4) | 120 – 132 |
| Alkalinity (mg/L as CaC0 <sub>3</sub> ) | 179 (N = 4) | 178 - 180 |
| рН                                      | 8.3 (N = 4) | 8.2 - 8.3 |

- 94 -

Appendix 2

Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water<sup>1</sup>

| N                         | Measured Concentration |                    |          |
|---------------------------|------------------------|--------------------|----------|
| Component                 | (μg/L) Comp            | oonent             | (μg/L)   |
|                           |                        |                    |          |
| Aldrin                    | < 0.0099               | Heptachlor Epoxide | < 0.0099 |
| Alpha BHC                 | < 0.0099               | Malathion          | < 2.0    |
| Beta BHC                  | < 0.040                | Merphos            | < 2.0    |
| Bolstar                   | < 2.0                  | Methoxychlor       | < 0.099  |
| Chlordane                 | < 0.50                 | Methyl Parathion   | < 2.0    |
| Coumaphos                 | < 3.0                  | Mevinphos          | < 2.0    |
| Delta BHC                 | < 0.0099               | Mirex              | < 0.050  |
| Demeton-O                 | < 2.0                  | Naled              | < 3.0    |
| Demeton-S                 | < 2.0                  | o,p-DDD            | < 0.020  |
| Diazinon                  | < 2.0                  | o,p-DDE            | < 0.020  |
| Dichlorvos                | < 2.0                  | o,p-DDT            | < 0.020  |
| Dieldrin                  | < 0.020                | p,p-DDD            | < 0.020  |
| Disulfoton                | < 2.0                  | p,p-DDE            | < 0.020  |
| Dursban (Chlorpyrifos)    | < 2.0                  | p,p-DDT            | < 0.025  |
| Endosulfan I              | < 0.0099               | PCB-1016           | < 0.50   |
| Endosulfan II             | < 0.042                | PCB-1221           | < 1.2    |
| Endosulfan Sulfate        | < 0.020                | PCB-1232           | < 0.89   |
| Endrin                    | < 0.020                | PCB-1242           | < 0.50   |
| EPN                       | < 4.0                  | PCB-1248           | < 0.50   |
| Ethion                    | < 2.0                  | PCB-1254           | < 0.50   |
| Ethoprop                  | < 2.0                  | PCB-1260           | < 0.50   |
| Ethyl Parathion           | < 2.0                  | Phorate            | < 2.0    |
| Famphur                   | < 2.0                  | Ronnel             | < 2.0    |
| Fensulfothion             | < 4.0                  | Stirophos          | < 2.0    |
| Fenthion                  | < 2.0                  | Telodrin           | < 0.0099 |
| Gamma BHC – Lindane       | < 0.0099               | Tokuthion          | < 2.0    |
| Guthion (Azinphos-methyl) | < 4.0                  | Toxaphene          | < 0.99   |
| НСВ                       | < 0.099                | Trichloronate      | < 2.0    |
| Heptachlor                | < 0.0099               | Trithion           | < 2.0    |

<sup>1</sup>Analyses performed by Lancaster Laboratories on samples collected on December 22, 2004.

- 95 -

**Appendix 2 (Continued)** 

Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water<sup>1</sup>

| Measured Concentration |                  |                  | Measured Concentration |
|------------------------|------------------|------------------|------------------------|
| Component              | (mg/L) Component |                  | (mg/L)                 |
| Aluminum <             | 0.200            | Magnesium        | 12.7                   |
| Antimony               | < 0.0200         | Manganese        | < 0.0050               |
| Arsenic                | < 0.0100         | Mercury          | < 0.00020              |
| Barium                 | < 0.0050         | Nickel           | < 0.0100               |
| Beryllium              | < 0.0050         | Nitrate Nitrogen | < 0.50                 |
| Bromide                | < 2.5            | Nitrite Nitrogen | < 0.50                 |
| Cadmium <              | 0.0050           | Potassium        | 6.64                   |
| Calcium 31.1           |                  | Selenium         | < 0.0100               |
| Chloride 6.9           |                  | Silver           | < 0.0050               |
| Chromium <             | 0.0050           | Sodium           | 19.7                   |
| Cobalt <               | 0.0050           | Sulfate          | 5.5                    |
| Copper                 | < 0.0100         | Thallium         | < 0.0200               |
| Fluoride               | < 0.50           | Vanadium         | < 0.0050               |
| Iron                   | < 0.200          | Zinc             | < 0.0200               |
| Lead <                 | 0.0200           |                  |                        |

<sup>&</sup>lt;sup>1</sup>Analyses performed by Lancaster Laboratories on samples collected on December 22, 2004.

- 96 -

## Appendix 3

Protocol and Protocol Amendments

### PROTOCOL

ANALYTICAL METHOD VERIFICATION FOR THE DETERMINATION OF WATER SOLUBLE COMPONENTS OF PETROLEUM COKE IN FRESHWATER USING GAS CHROMATOGRAPHY (GC) OR HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

European Commission Working Document SANCO/3029/99 rev. 4

Submitted to

American Petroleum Institute 1220 L Street, N.W. Washington, DC 20005

# Wildlife International, Ltd.

8598 Commerce Drive Easton, Maryland 21601 (410) 822-8600

March 30, 2004

- 2 -

ANALYTICAL METHOD VERIFICATION FOR THE DETERMINATION
OF WATER SOLUBLE COMPONENTS OF PETROLEUM COKE IN FRESHWATER
USING GAS CHROMATOGRAPHY (GC) OR HIGH PERFORMANCE LIQUID
CHROMATOGRAPHY (HPLC)

| CHROMATOG                                                                                          | RAFHT (HFLC)                                                                  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| SPONSOR:                                                                                           | American Petroleum Institute<br>1220 L Street, N.W.<br>Washington, DC 20005   |  |
| SPONSOR'S REPRESENTATIVE:                                                                          |                                                                               |  |
| SPONSOR'S TECHNICAL STUDY MONITOR:                                                                 |                                                                               |  |
| TESTING FACILITY:                                                                                  | Wildlife International, Ltd.<br>8598 Commerce Drive<br>Easton, Maryland 21601 |  |
| STUDY DIRECTOR:                                                                                    | Wildlife International, Ltd.                                                  |  |
| LABORATORY MANAGEMENT:                                                                             | Wildlife International Ltd.                                                   |  |
| FOR LABORAT                                                                                        | ORY USE ONLY                                                                  |  |
| Proposed Dates:  Experimental Start Date: 4/2E/c4  Project No.: 472C-104  Test Substance No.: 6485 | Experimental Termination Date: 6/28/04                                        |  |
| PROTOCOL APPROVAL                                                                                  |                                                                               |  |
|                                                                                                    | 1/28/04<br>DATE  4/28/04  DATE  DI April, 2004  DATE                          |  |

- 3 -

#### INTRODUCTION

Wildlife International, Ltd. will conduct analytical trials to verify analytical methods for the determination of polyaromatic hydrocarbons (PAH) in water accommodated fraction (WAF) solutions made with petroleum coke and freshwater. The study will be performed at the Wildlife International, Ltd. analytical chemistry facility in Easton, Maryland. The study will be performed based on procedures in *Residues: Guidance for Generating and Reporting Methods of Analysis in Support of Pre-registration Data Requirements for Annex II (Part A, Section 4) and Annex III (Part A, Section 5) of Directive 91/414 (1).* Petroleum coke is defined as the product formed by subjecting the heavy tar-like residue remaining following oil refining to high temperatures and pressures. It consists of primarily elemental carbon with considerably smaller amounts of hydrocarbons, sulfur and trace amounts of heavy metals. The method will be verified by fortifying freshwater with the test substance and determining the recoveries. Raw data for all work performed at Wildlife International, Ltd. and a copy of the final report will be filed by project number in archives located on the Wildlife International, Ltd. site, or at an alternative location to be specified in the final report.

#### **OBJECTIVE**

There are two objectives to this study. One is to verify a Gas Chromatography (GC) or High Performance Liquid Chromatography (HPLC) method for determination of polycyclic aromatic hydrocarbons (PAH) in water accommodated fraction (WAF) solutions of petroleum coke. The second is to employ the method to determine the optimum WAF mixing time to achieve maximum leaching of PAHs from the test substance matrix into freshwater.

#### EXPERIMENTAL DESIGN

Wildlife International, Ltd. freshwater will be fortified at three different concentrations and analyzed using HPLC or GC methods. Modifications to the methodologies will be made as necessary in order to achieve quantitation of the test substance in the freshwater matrix. Reagent and matrix blanks will be analyzed to evaluate possible analytical interferences that may be present. One or more calibration curves will be prepared and analyzed with each series of matrix fortification samples.

-4-

### MATERIALS AND METHODS

#### **Test Substance**

The test substance is green coke (CAS Number 64741-79-3) sieved to approximately 2 mm particle size. Information on the characterization of test, control and reference substances is required by Good Laboratory Practice Standards (GLP), 40 CFR Parts 160.31 and 792. The Sponsor is responsible for providing Wildlife International, Ltd. written verification that the test substance has been characterized according to GLPs prior to its use in the study. If written verification of GLP test substance characterization is not provided to Wildlife International, Ltd., it will be noted in the compliance statement of the final report.

The Sponsor is responsible for all information related to test and reference substances and agrees to accept any unused test or reference substance and/or test or reference substance containers remaining at the end of the study.

### Reagents and Solvents

All solvents used in the method or procedure will be HPLC grade or equivalent. All reagents will be ACS reagent grade or higher quality. Nanopure water will be used. The solvents and reagents are not expected to contain contaminants capable of interfering with the purpose of this study.

### Freshwater

Freshwater to be used for the method verification will be obtained from a well approximately 40-meters deep located on the Wildlife International, Ltd. site. The water will be passed through a sand filter and pumped into a 37,800-L storage tank where the water will be aerated with spray nozzles. Prior to use, the water will be filtered to 0.45  $\mu$ m in order to remove fine particles. The resulting water is characterized as moderately hard. Typical values for hardness, alkalinity, pH and specific conductance are approximately:

| Hardness, mg/L as CaCO <sub>3</sub>   | 145 |
|---------------------------------------|-----|
| Alkalinity, mg/L as CaCO <sub>3</sub> | 190 |
| pH                                    | 8.1 |
| Specific Conductance, µmhos/cm        | 330 |

- 5 -

Hardness, alkalinity, pH and specific conductance will be measured weekly to monitor the consistency of the well water. Means and ranges of the measured parameters for the four-week period preceding the test will be provided in the final report. Analyses will be performed at least once annually to determine the concentrations of selected organic and inorganic constituents of the well water. Results of these analyses will be summarized in the final report. Specifications for acceptable levels of contaminants in well water have not been established. However, there are no known levels of contaminants reasonably expected to be present in the well water that are considered to interfere with the purpose or conduct of the test.

#### Fortification Stock Solution(s)

Freshwater will be fortified with a stock solution(s) of the test substance. Each stock solution will be assigned a unique identification code which will be recorded on a stock preparation log sheet.

#### Reference Stock Solution(s), Calibration Standards and Curves

A primary stock solution(s) will be prepared from appropriate reference substances, when available. Calibration standards will be prepared by appropriate dilution of this primary stock solution(s). A minimum of five concentrations of calibration standards will be prepared and analyzed along with each analysis set of verification samples. The calibration standard series will be injected at the beginning and end of the analytical run with, in addition, a minimum of one standard injected following every five samples. One or more calibration curves will be derived from regression analysis of the instrumental responses of the standards.

#### Method

The analytical methods to be used will be based upon GC (EPA 8270C) or HPLC procedures. The method(s) may be modified to yield a method capable of determining the test substance in freshwater. Samples will be analyzed for the components of petroleum coke listed in Table 1, if possible. The method used will be summarized in the final report.

### Verification Analyses - Method Performance

Matrix fortifications (fortified wellwater), prepared at known concentrations of the test substance, will be analyzed to determine recovery and to evaluate method performance. The anticipated verification series will consist of the following analyses:

- 6 -

#### SUMMARY OF PROPOSED VERIFICATION ANALYSIS SCHEME

| Concentration             | Number of Samples                                                  |
|---------------------------|--------------------------------------------------------------------|
| 0 (Control)               | 2                                                                  |
| 0 (Control)               | 2                                                                  |
| Level 1 -Low <sup>1</sup> | 5                                                                  |
| Level 2                   | 5                                                                  |
| Level 3 - High            | 5                                                                  |
|                           | 19                                                                 |
|                           | 0 (Control)<br>0 (Control)<br>Level 1 -Low <sup>1</sup><br>Level 2 |

Matrix fortifications will be prepared at three concentrations, the lowest and highest of which will bracket the anticipated treatment range for environmental effects studies.

Matrix fortifications will span the range of concentrations that are anticipated to be used in subsequent environmental effects tests and will be selected in consultation with the Sponsor. Individual fortification samples (identified by project number and a unique sample identification number) will be prepared and analyzed.

If difficulties arise in the validation process (e.g., low recoveries or interferences), the Sponsor will be notified and the need for additional validation and/or method development will be determined through discussions with the Sponsor. Upon completion of the method verification, the Sponsor will review the results and authorize the use of the methodology for analysis of samples, or will authorize further method development trials. Recovery values in the range of 80 to 120% will be used as criteria for method acceptability.

#### **Evaluation of Interferences**

Matrix and reagent blanks, if applicable, will be analyzed to assess the presence of potential interferences. Matrix blanks will consist of freshwater without addition of test substance.

#### **Data Analysis**

One or more calibration curves will be established for each analytical run. A regression equation of the concentration versus peak area for the calibration standards will be generated. The concentration of the samples will be determined by substituting the respective peak area into the regression equation.

- 7 -

If the fortification range and calibration curve standard concentrations are significantly higher than method capabilities for quantitation, the limit of quantitation (LOQ) will be defined as the concentration equivalent to the lowest standard accounting for dilutions and other manipulations in the method for matrix blanks. If the fortification range is near the method capability for accurate quantitation of the analyte, the LOQ will be determined from the responses of replicate control samples. The mean (Sb) and standard deviation ( $\sigma$ ) of responses will be determined for the replicate control sample and converted to ppm equivalents using a standard curve and method dilution factors. The LOQ will be expressed as the concentration equivalent of Sb + 10  $\sigma$ . The limit of detection (LOD), defined as the lowest concentration of analyte which can be injected and produce a measurable response above background, will be expressed as the amount equivalent to Sb + 3  $\sigma$ .

#### Precision and Repeatability

The precision of the method will be reported as the RSD of repeatability at each fortification level and the overall RSD will be reported. In general, the RSD should be  $\leq 20\%$ .

### Determination of Mixing Time for the Preparation of WAF Solutions

Petroleum Coke will be mixed directly with dilution water on a weight:volume basis. A water accommodated fraction (WAF) will be prepared at a single high concentration of 1000 mg coke/L in 13.2L and 4L Pyrex® aspirator bottles with tubulation (Fisher Catalog Numbers 02-972-2 and 02-972F). Solutions will be prepared by mixing the test solutions with a vortex depth of approximately 30% of the test solution height and then allowing settling before sampling. A WAF equilibration test will be performed with analysis of test solutions after approximately 24, 48, 72 and possibly 96 hours of mixing. Sampling intervals may be modified by the Study Director based upon the analytical results. The length of the mixing time required to achieve approximately stable concentration in the WAF will be evaluated and used in aquatic toxicity testing. Analysis of WAF solutions for the analytes listed in Table 1 will be performed using the chromatographic methods.

#### RECORDS TO BE MAINTAINED

Records to be maintained for data generated by Wildlife International, Ltd. will include:

1. A copy of the signed protocol.

-8-

- 2. Identification and characterization of the test substance and/or analytical standard, if provided by the Sponsor.
- 3. Dates of initiation and termination of the test.
- 4. Storage conditions for test substance, analytical standards, and/or samples.
- 5. Test substance and/or analytical standard use log.
- 6. Concentration calculations and records of solution preparation.
- 7. Instrument operating conditions and chromatograms.
- 8. Statistical calculations.
- 9. A copy of the final report.
- 10. Documentation that the steps in the method were followed.

#### FINAL REPORT

The report will summarize the findings of the verification, the procedural recoveries obtained, and the methods and instrumentation employed. Upon receipt of these findings, the Sponsor will review the methods and results and evaluate the results for acceptability prior to initiating any fate and/or effects studies.

The final report will include, but not be limited to, the following:

- 1. Name and address of the facility performing the study.
- 2. Dates on which the study was initiated and completed.
- 3. Objectives and procedures stated in the approved protocol, including any changes in the original protocol or deviations from the protocol.
- 4. The test substance and/or analytical standard identification, including name, chemical abstract number or code number, strength, purity, composition, date of receipt, lot number, storage conditions, physical characteristics, stability and method of preparation of test concentrations, if provided by the Sponsor.
- 5. A brief summary of the analytical methodology: A description of the experimental measurements, example calculations, sample preparation (sample weights and dilutions), instrumentation employed, reagents and solvents used, class of water used, and any major modifications to the method.
- 6. A description of all circumstances that may have affected the quality or integrity of the data.

- 9 -

- The name of the Study Director, the names of other scientists or professionals, and the names
  of all supervisory personnel involved in the study.
- 8. A description of the transformations, calculations, or operations performed on the data.
- 9. The signed and dated reports of each of the individual scientists or other professionals involved in the study, if applicable.
- 10. The location where raw data and final report are to be stored.
- 11. A statement prepared by the Quality Assurance Unit listing the dates that study inspections were made and the dates of any findings reported to the Study Director/Management.

#### CHANGES TO PROTOCOL

Planned changes to the protocol will be in the form of written amendments signed by the Study Director and approved by the Sponsor's Representative. Amendments will be considered as part of the protocol and will be attached to the final protocol. Any other changes will be in the form of written deviations signed by the Study Director and filed with the raw data. All changes to and deviation from the protocol will be indicated in the final report.

#### GOOD LABORATORY PRACTICES

This study will be conducted in accordance with Good Laboratory Practice Standards for EPA (40 CFR Part 160 and/or Part 792); and OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98) 17). Each study conducted by Wildlife International, Ltd. is routinely examined by the Wildlife International, Ltd. Quality Assurance Unit for compliance with Good Laboratory Practices, Standard Operating Procedures and the specified protocol. A statement of compliance with Good Laboratory Practices will be prepared for all portions of the study conducted by Wildlife International, Ltd. The Sponsor will be responsible for certification of compliance with Good Laboratory Practices for procedures performed by other laboratories. Raw data for all work performed at Wildlife International, Ltd. and a copy of the final report will be filed by project number in archives located on the Wildlife International, Ltd. site, or at an alternative location to be specified in the final report.

- 106 -

## Wildlife International, Ltd.

- 10 -

### REFERENCES

 European Commission. 2000. Residues: Guidance for Generating and Reporting Methods of Analysis in Support of Pre-registration Data Requirements for Annex II (Part A, Section 4) and Annex III (Part A, Section 5) of Directive 91/414. SANCO/3029/99 rev. 4, 11/07/00

- 11 -

#### Table 1.

Analytes of Interest in Petroleum Coke

Acenanhthene

Acenaphthylene

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene

Dibenzo(a,e)pyrene

Dibenz(a,h)anthracene

Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene

Perylene

Phenanthrene

Pyrene

Project Number 472C-104

# Wildlife International, Ltd.

Page 1 of 2

#### AMENDMENT TO STUDY PROTOCOL

STUDY TITLE:

Analytical Method Verification for the Determination of Petroleum Coke in Freshwater Using Gas Chromatography (GC) or High Performance Liquid

Chromatography (HPLC)

PROTOCOL NO.: 472/033004/MVFW-GC-HPLC/SUB472

**AMENDMENT NO.:** 1

SPONSOR: American Petroleum Institute

PROJECT NUMBER: 472C-104

EFFECTIVE DATE:

#### Add to Page 4 - Test Substance

Petroleum Coke pellets (diameter of approximately 2 mm) provided by the Sponsor will be analyzed by GC or HPLC in an attempt to determine concentrations of polyaromatic hydrocarbons (PAH) components in the neat test substance. Results of the analysis will be compared to the analysis of the PAH components in Petroleum Coke provided by the Sponsor.

#### REASON:

The purpose for analyzing neat petroleum coke is to determine the sensitivity of the selected method for those specific analytes of interest.

### Add to Page 5 - Method

Prior to performance of the method verification trial, an evaluation of the HPLC and/or GC method(s) will be performed to determine the background levels of the analytes in water and establish a theoretical limit of quantitation (LOQ) in freshwater. The LOQ will be defined as the product of the low standard and the concentration factor of the matrix blank.

### REASON:

At the request of the Sponsor, the steps to be taken to establish the theoretical LOQ were specified in the protocol.

### Add and Revise Page 6 - Verification Analysis - Method Performance:

The method verification trial will be performed by fortifying freshwater with known concentrations of analytical standards of the PAH analytes of interest rather than with petroleum coke containing trace quantities of these analytes. Portions of the protocol that refer to fortifying water with petroleum coke are effectively changed to fortifying water with known standards (individual or mixed standards) of the PAH analytes of interest.

Project Number 472C-104

# Wildlife International, Ltd.

Page 2 of 2

Fortification levels of each analyte will include the target LOQ and 10X the LOQ to bracket the expected concentrations of each analyte in water to be used for environmental effects testing with petroleum coke. If expected levels of an analyte are above 10X the LOQ, additional fortification levels for that analyte will be added at the appropriate concentration(s).

#### REASON:

Concentrations of most of the analytes of interest in petroleum coke are < LOQ or are present in trace quantities according to information provided by the Sponsor. Fortifying with known concentrations using analyte standards will verify the efficiency and accuracy of the HPLC and/or GC method for analysis of the analytes in waters to be used for environmental effects testing.

### Add to Table 1 – Analytes of Interest

l-methylnapthalene

2-methylnapthalene

#### REASON:

The analytes were not included in the protocol but were found at relatively high concentrations in the petroleum coke sample provided by the Sponsor.



9/17/04 DATE

9/13/04

DATE

Lugart 6, 2004

- 110 -

Project Number 472C-104

# Wildlife International, Ltd.

Page 1 of 1

#### AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Analytical Method Verification for the Determination of Petroleum Coke in

Freshwater Using Gas Chromatography (GC) or High Performance Liquid

Chromatography (HPLC)

PROTOCOL NO.: 472/033004/MVFW-GC-HPLC/SUB472

**AMENDMENT NO.: 2** 

SPONSOR: American Petroleum Institute

PROJECT NUMBER: 472C-104

EFFECTIVE DATE: August 20, 2004

### Add to Page 2 - Reference Substance Numbers

6705 through 6720, 6765, and 6766.

#### REASON:

Identification of analytical standards to be used for measurement of the PAH's of interest. The standards will be used for instrument calibration, detection limit determination and matrix fortifications.

#### Add to Page 2 - Proposed Dates

Experimental Start Date: August 24, 2004 Experimental Termination Date: October 24, 2004

#### REASON:

Information required to complete the protocol.

9/17/09

DATE

10/1/0Y DATE - 111 -

Project Number 472C-104

## Wildlife International, Ltd.

Page 1 of 1

#### AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Analytical Method Verification for the Determination of Petroleum Coke in

Freshwater Using Gas Chromatography (GC) or High Performance Liquid

Chromatography (HPLC)

PROTOCOL NO.: 472/033004/MVFW-GC-HPLC/SUB472

**AMENDMENT NO.: 3** 

SPONSOR: American Petroleum Institute

PROJECT NUMBER: 472C-104

EFFECTIVE DATE: September 17, 2004

Add to Page 2 - Concentrations to be Verified

10.0, 40.0 and 100  $\mu g$  a.i./L

REASON:

Definition of test concentrations.

9/17/04
DATE

10/1/04
DATE

Project Number 472C-104

## Wildlife International, Ltd.

Page 1 of 1

#### AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Analytical Method Verification for the Determination of Petroleum Coke in

Freshwater Using Gas Chromatography (GC) or High Performance Liquid

Chromatography (HPLC)

PROTOCOL NO.: 472/033004/MVFW-GC-HPLC/SUB472

**AMENDMENT NO.: 4** 

SPONSOR: American Petroleum Institute

PROJECT NUMBER: 472C-104

EFFECTIVE DATE: September 28, 2004

### REMOVE: The following section from Amendment 1

Petroleum Coke pellets (diameter of approximately 2 mm) provided by the Sponsor will be analyzed by GC or HPLC in an attempt to determine concentrations of polyaromatic hydrocarbons (PAH) components in the neat test substance. Results of the analysis will be compared to the analysis of the PAH components in Petroleum Coke provided by the

#### REASON:

Sponsor request since analysis of PAH in neat test substance is not relevant to the analysis of PAH in water. The characterization of Petroleum Coke pellets provided by the Sponsor is adequate to determine the presence of PAH in the test substance.



9/29/04
DATE

9/09/04

DATE

/0/1/04

DATE

- 113 -

Project Number 472C-104

## Wildlife International, Ltd.

Page 1 of 1

#### AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Analytical Method Verification for the Determination of Petroleum Coke in

Freshwater Using Gas Chromatography (GC) or High Performance Liquid

Chromatography (HPLC)

PROTOCOL NO.: 472/033004/MVFW-GC-HPLC/SUB472

**AMENDMENT NO.: 5** 

SPONSOR: American Petroleum Institute

PROJECT NUMBER: 472C-104

**EFFECTIVE DATE:** August 11, 2005

CHANGE: Title of the report

From: Analytical Method Verification for the Determination of Petroleum Coke in Freshwater

Using Gas Chromatography (GC) or High Performance Liquid Chromatography (HPLC)

Analytical Method Verification for the Determination of Petroleum Coke in Freshwater To:

Using High Performance Liquid Chromatography (HPLC)

#### **REASON:**

Request of the Sponsor. Gas Chromatography (GC) was not used for the actual validation.

9/12/05
DATE

9/10/16

DATE

2/2/05
DATE

- 114 -

## Appendix 4

**Test Article Selection** 

- 115 -



THE FACE CONSULTANTS INC.
Post Office Box 53473 Houston, Texas 77052 853/351-7800 Fax 853/351-7887
A Member of Jacobs Engineering Group

February 22, 2001

American Petroleum Institute 1220 L Street, NW Washington, D.C. 20005-4070

Attached is Pace's report covering Task 1 and 2 entitled "U.S. Delayed Coker Petroleum Coke Quality Survey 1998-1999."

We would be pleased to answer any questions concerning this work for API. Please contact me at 832/351-7811 or email

For PACE



Attachmen

#### U.S. DELAYED COKER PETROLEUM COKE QUALITY SURVEY 1998-1999

#### INTRODUCTION

In 1998 the United States Environmental Protection Agency (EPA) challenged chemical producers and importers to provide voluntarily basic toxicity information on their high production volume (HPV) chemicals, defined as those chemicals which are produced in or imported to the U.S. in amounts greater than 1 million pounds per year. The goal of the HPV Challenge Program is to ensure that the American public has access to basic information about the hazards associated with chemicals manufactured and used in the greatest quantities in the United States. It is designed to generate the complete hazard screening data for HPV commercial chemicals.

The American Petroleum Institute (API) serves as administrator of the Petroleum HPV Testing Group, a consortium made up of 72 member companies from API, the National Petrochemical & Refiners Association (NPRA), the Gas Producers Association (GPA) and the Asphalt Institute. These companies represent 92% of the nation's refinery capacity. The Petroleum HPV Testing Group has sponsored 396 substances produced and used by the nation's petroleum industry to meet the EPA's HPV challenge.

Pace was retained by the API HPV Testing Group to assist in identifying potential sources of U.S. petroleum coke samples that could be used in the HPV testing program. As the first step in this process, Pace undertook a review of its quarterly petroleum coke production data to help characterize current U.S. petroleum coke production qualities. Pace has now completed the review of its 1998 and 1999 quarterly petroleum coke production data for all U.S.-based delayed cokers. The results of this review are discussed below.

#### **METHODOLOGY**

Pace's petroleum coke production database was used to determine quality characteristics of petroleum coke produced by U.S. refineries. Pace has conducted a survey of U.S. petroleum coker production on a quarterly basis since the second quarter of 1983. Refineries provide the bulk of the data, but some data are also gathered from other market participants. These data are maintained in a database from which the 1998 and 1999 quarterly data were extracted for this study. It was decided that data analysis would concentrate on delayed cokers (excluding needle cokers) since for 1999 our delayed coker data set includes 92+% of all the petroleum coke produced in the United States. Accordingly, fluid and Flexicokers<sup>1</sup> were removed from the data set.

Needle cokers were removed from the delayed coker database because needle cokers represent a special subset of delayed coking production. Needle coke differences include:

| <sup>1</sup> Flexicoke is a proprietary coking process developed by Exxon. It involves partially gasifying fluid coke. |     |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|
| THE PACE CONSULTANTS INC.                                                                                              | -1- |  |  |  |  |  |  |  |

- 1. Needle coke quality is much higher than other delayed coke
- 2. Needle coke is produced using different feedstock & coking operational procedures because it is a product, not a by-product like other delayed cokes
- 3. The quantity of needle coke produced is very small
- Needle coke is handled very carefully due to its high price (typically > \$350/metric ton)

#### SUMMARY AND DATA ANALYSIS

These data were analyzed to determine the ton-weighted average petroleum coke qualities of sulfur (wt%), nickel (ppm), vanadium (ppm), and volatile material (wt%). All data are presented on a dry basis. The results are presented in Table 1 below.

TABLE 1

| U.S. DELAYED PETROLEUM COKE QUALITY SUMMARY<br>TON-WEIGHTED QUARTERLY AVERAGES |                                                     |      |      |      |      |      |      |        |
|--------------------------------------------------------------------------------|-----------------------------------------------------|------|------|------|------|------|------|--------|
|                                                                                | Sulfur, Wt% Nickel, ppm Vanadium, ppm Vol. Mat., Wt |      |      |      |      |      |      | ., Wt% |
| Quarter                                                                        | 1998                                                | 1999 | 1998 | 1999 | 1998 | 1999 | 1998 | 1999   |
| 1Q                                                                             | 4.15                                                | 4.11 | 286  | 275  | 758  | 801  | 10.9 | 10.5   |
| 2Q                                                                             | 4.22                                                | 4.22 | 277  | 283  | 811  | 821  | 10.8 | 11.0   |
| 3Q                                                                             | 4.21                                                | 4.21 | 277  | 282  | 811  | 857  | 10.9 | 10.9   |
| 40                                                                             | 4.21                                                | 4.22 | 282  | 276  | 854  | 852  | 10.7 | 10.9   |
| Ton-Wt Ava                                                                     | 4.20                                                | 4.19 | 280  | 279  | 809  | 833  | 10.8 | 10.8   |

Ton-weighted average qualities for each quarter were calculated in the following manner:

∑', (quality value)<sub>delayed coker</sub> \* (quarterly production)<sub>delayed coker</sub>

Total quarterly production

Where:

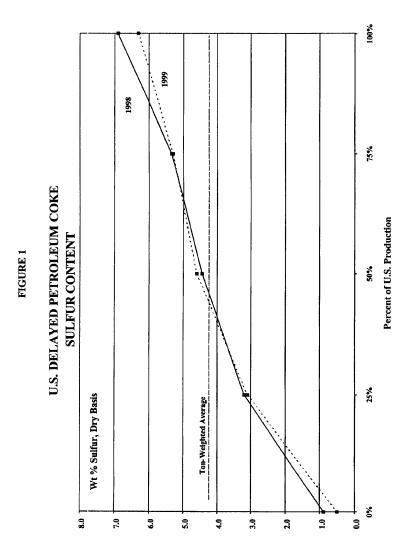
quality value = sulfur, vanadium, nickel or volatile content of petroleum coke produced by each delayed coker

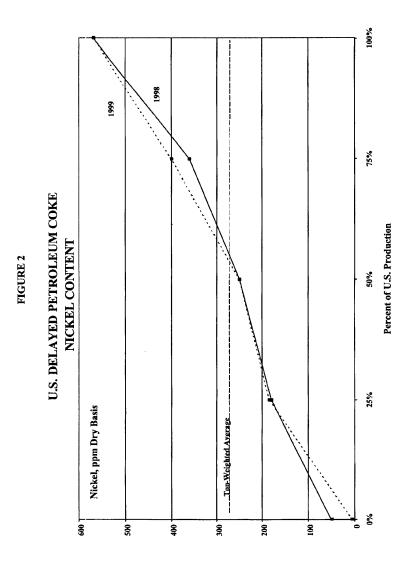
quarterly production = petroleum coke produced by that delayed coker

Pace next reviewed the data to determine a ton-weighted frequency distribution for each of the qualities listed. The results of this analysis are presented in Table 2 and in Figures 1 through 4.

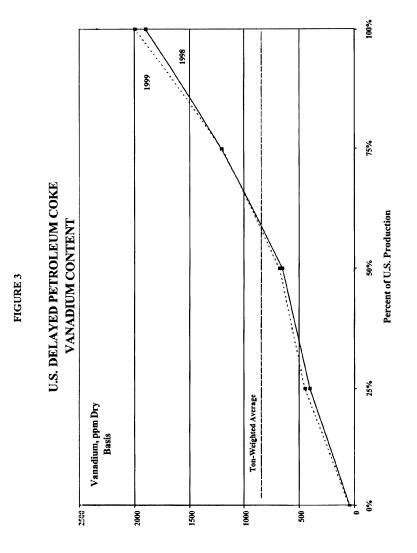
TABLE 2

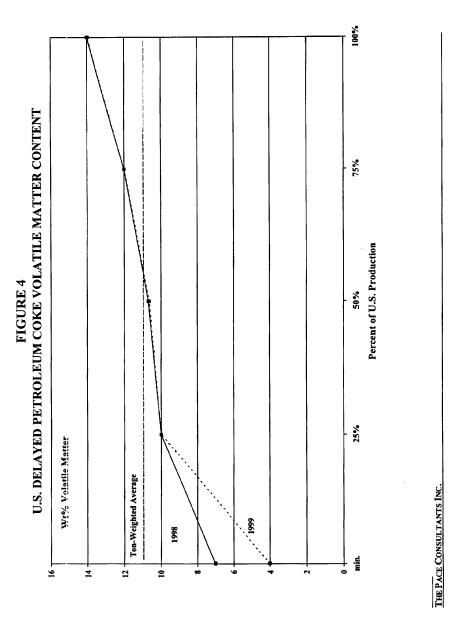
| U.S. DELAYED PETROLEUM COKE QUALITY SUMMARY<br>BY PRODUCTION QUARTILE |      |      |                 |     |      |                            |      |                       |  |
|-----------------------------------------------------------------------|------|------|-----------------|-----|------|----------------------------|------|-----------------------|--|
| Cumulative<br>Production                                              |      |      | Nickel,<br>1998 | ,   |      | Vanadium, ppm<br>1998 1999 |      | Vol, Wt%<br>1998 1999 |  |
| min.                                                                  | 0.90 | 0.50 | 50              | 5   | 45   | 45                         | 7.0  | 4.0                   |  |
| 25%                                                                   | 3.20 | 3.10 | 180             | 185 | 400  | 445                        | 10.0 | 10.0                  |  |
| 50%                                                                   | 4.45 | 4.60 | 250             | 250 | 650  | 675                        | 10.7 | 10.7                  |  |
| 75%                                                                   | 5.34 | 5.30 | 360             | 400 | 1205 | 1200                       | 12.0 | 12.0                  |  |
| 100%                                                                  | 6.90 | 6.30 | 568             | 568 | 1900 | 2000                       | 14.0 | 14.0                  |  |


Quality quartiles for each year were calculated in the following manner:


Annual data were sorted according to each specific quality value (e.g., sulfur, vanadium, nickel, and volatile content) and the cumulative production of petroleum coke by delayed coker was calculated. Quartiles were then calculated for the annual production total, and the quality value at the cumulative total that equaled each quartile was used to determine the quality for that quartile.

#### TRENDS


Comparing the non-weighted averages to the 50% production quartile (i.e., the median) reveals the following trends:


- The weighted average nickel and vanadium content of U.S. delayed petroleum coke is higher than the median. This is a direct result of the increasing amount of heavy crudes, particularly Mexican and Venezuelan crudes, processed by U.S. refineries. Because these crudes produce petroleum cokes with nickel and vanadium contents that are significantly above the median, they skew the weighted average away from the median.
- Ton-weighted sulfur content is slightly below the median because some cokers produce
  petroleum cokes that are well below the median sulfur content (i.e., anode-grade coke
  which is calcined and primarily used to make anodes for the aluminum smelting
  industry).





**AMENDED** 





- The sulfur content at the upper and lower ends of the quality spectrum was better in 1999 than in 1998. We believe the lower sulfur content in 1999 was a result of crude production cut-backs by OPEC (Organization of Petroleum Exporting Countries) and other crude oil producers. These producers preferentially reduced the production of their lower quality crude oils in order to minimize the production reductions of their higher quality (i.e. higher priced) crude oils. We see 1999 as an aberration in the general trend of increasing sulfur content in U.S. petroleum cokes.
- We expect the metals content and sulfur content of U.S. petroleum coke will deteriorate beginning in 2001 as new U.S. cokers scheduled to begin operations in the 2000-2002 time frame start up.
- The average volatile matter content is essentially equal to the median.

#### **RECOMMENDATIONS**

Pace identified candidate refineries for sampling based on the quality data from the third quarter of 2000, which is the most recent quarter for which data are available. It should be noted that these data may vary slightly from the 1998-1999 averages as increasing amounts of heavy crude are processed. Based on these data, Pace recommends the following candidates for sampling in support of the Petroleum HPV Testing Program:

| PETROLEUM HPV TESTING PROGRAM DELAYED PETROLEUM COKE SAMPLE CANDIDATES |                                     |            |       |            |       |            |  |  |
|------------------------------------------------------------------------|-------------------------------------|------------|-------|------------|-------|------------|--|--|
|                                                                        | Candidate A Candidate B Candidate C |            |       |            |       |            |  |  |
|                                                                        | Value                               | Percentile | Value | Percentile | Value | Percentile |  |  |
| Sulfur, Wt%                                                            | 6.00                                | 93         | 5.75  | 86         | 5.50  | 80         |  |  |
| Nickel, ppm                                                            | 500                                 | 90         | 300   | 58         | 250   | 50         |  |  |
| Vanadium, ppm                                                          | 1,500                               | 84         | 1,200 | 75         | 1,000 | 65         |  |  |
| Volatiles, Wt%                                                         | 10.00                               | 25         | 12.00 | 75         | 13.00 | 88         |  |  |

| PETROLEUM HPV TESTING PROGRAM DELAYED PETROLEUM COKE SAMPLE CANDIDATES |               |                       |  |                                 |    |  |  |  |
|------------------------------------------------------------------------|---------------|-----------------------|--|---------------------------------|----|--|--|--|
|                                                                        | Cand<br>Value | ldate D<br>Percentile |  | Candidate E<br>Value Percentile |    |  |  |  |
| Sulfur, Wt%                                                            | 4.20          | 43                    |  | 5.50                            | 80 |  |  |  |
| Nickel, ppm                                                            | 250           | 50                    |  | 350                             | 67 |  |  |  |
| Vanadium, r pm                                                         | 1,500         | 84                    |  | 1,100                           | 70 |  |  |  |
| Volatiles, Wt%                                                         | 15.00         | 100                   |  | 10.00                           | 25 |  |  |  |

Our analysis ind cates that some compromises will have to be made in obtaining a sample for the HPV program since no refinery's petroleum coke is in the upper 75<sup>th</sup> percentile in all four quality parameters we have evaluated. Additionally, we have spent some time and effort trying to find petroleum cokes which are sampled with automatic sampling equipment that has been bias tested and is operated by an independent laboratory. Unfortunately, we have found that the locations with the best sampling systems have petroleum cokes of generally better quality. Therefore, we do not believe that we will be able to find a "perfect" candidate petroleum coke.

While the sampling at the candidate refineries may not be ideal, the sampling and analysis data have been used for commercial transactions. Substantial quantities of petroleum coke from each of the candidate refineries have been sold in the petroleum coke market. Commercial transactions have relied on the laboratory results for determining quality bonus and penalties and conformance with contract quality specifications. Thus, the samples taken for the HPV study would conform to generally accepted industry sampling practice.

The sampling plan would be to have the sample analyzed for the quality parameters used in this screening analysis (i.e. sulfur, vanadium, nickel, volatile matter) as well as four other commonly tested quality parameters—gross calorific value (Btu/lb), moisture (%), ash (%), and Hardgrove Grindability Index (HGI)—to verify that the sample obtained is similar to the anticipated quality characteristics. This plan would assure that the sample submitted for detailed HPV testing conforms to our quality expectations.

We may not be able to receive authorization from a refinery to use a sample of their petroleum coke for the HPV test. Our present plan would be to approach Refineries B and C regarding obtaining a sample. In the event that these two refineries choose not to participate, then the choice would be either refinery A or E, which have high sulfur and metals but bw volatile content or refinery D, which has high vanadium and volatile matter but low sulfur content. (note: each of the five candidate refineries has a different corporate owner).

Pace requests that the HPV Committee confirm Pace's recommended plan to approach refineries B and C regarding obtaining an HPV sample. It is not necessary for the HPV committee to decide now on the preferred refinery to contact in the event that refineries B and C do not wish to participate in the program. However, we would suggest that the committee begin to think about this issue so that decisions can be made expeditiously in the event that refineries B and C choose not participate.

- 125 -

**Certificates of Analysis** 



125 Market Street New Haven, CT 06513 USA

# CERTIFICATE OF ANALYSIS

Ph: 203-786-5290

E-mail: usa@accustandard.com

CATALOG NO. H-169N

DESCRIPTION:

Benzo(a)pyrene

LOT:

052803MT-AC

N/A

SOLVENT:

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Benzo(a)pyrene (Ames grade)

50-32-8 100 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

1. All weights are traceable through national institute of Standards & Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration
3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the suffix.



125 Market Street New Haven, CT 06513 USA

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com

CATALOG NO. H-110N

DESCRIPTION:

LOT:

A33783

SOLVENT: N/A EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Anthracene

120-12-7 99.4 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480
 Analyte Concentration = Purity x Gravimetric Concentration

3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the



125 Market Street New Haven, CT 06513

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290

Fax: 203-786-5287 E-mail: usa@accustandard.com

CATALOG NO. H-100N

DESCRIPTION:

Benz(a)anthracene

LOT:

N/A

SOLVENT:

EXPIRATION: Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration' Analyte Concentration<sup>2</sup>

(GC/FID)

Benz(a)anthracene

56-55-3 99.5

N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (,) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration
3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the



125 Market Street New Haven, CT 06513 USA

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 www.accustandard.com

CATALOG NO. H-125N

DESCRIPTION:

Acenaphthylene

LOT:

011504MS-AC

N/A SOLVENT:

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/FID)

Acenaphthylene

208-96-8 98.5 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration
3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the suffix.

This product was manufactured to meet the quality system requirements of ISO 9001



125 Market Street New Haven, CT 06513 USA

# CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287

E-mail: usa@accustandard.com

CATALOG NO. H-108N

DESCRIPTION:

Polynuclear Aromatic Hydrocarbon

01915EQ

LOT: N/A SOLVENT:

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%.$ 

Component

CAS#

**Purity %** 

Gravimetric Concentration'

Analyte Concentration<sup>2</sup>

(GC/MS)

Acenaphthene

83-32-9 100 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on **both** certificates and labels.

A comma.(,) is used to separate units of one-thousand or greater. A period (;) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

Technology, Test No. 822/25480

2. Analyte Concentration = Purity x Gravimetric Concentration

3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the

This product was manufactured to meet the quality system requirements of ISO 9001

QR-ORG/INO-001 Rev. 11/02

===



125 Market Street New Haven, CT 06513

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com

CATALOG NO. H-128N

DESCRIPTION:

Benzo(b)fluoranthene

LOT:

020402AG-AC

SOLVENT:

N/A

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Benzo(b)fluoranthene

205-99-2

100

N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration

3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the

This product was manufactured to meet the quality system requirements of ISO 9001



125 Market Street New Haven, CT 06513

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290

Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-103N

Benzo(g,h,i)perylene **DESCRIPTION:** 

> LOT: 122500MT-AC

SOLVENT:

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

**Purity %** 

Gravimetric Concentration1

Analyte Concentration<sup>2</sup>

(GC/MS)

Benzo(g,h,i)perylene

191-24-2 98.3 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration

3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the

\_\_\_\_\_

This product was manufactured to meet the quality system requirements of ISO 9001



125 Market Street New Haven, CT 06513 USA

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-129N

DESCRIPTION:

Benzo(k)fluoranthene

LOT:

112603AG-AC

SOLVENT:

N/A

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity % (GC/MS) Gravimetric Concentration1 Analyte Concentration<sup>2</sup>

Benzo(k)fluoranthene

207-08-9 99.7 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (,) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration
3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the suffix.

This product was manufactured to meet the quality system requirements of ISO 9001



## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com

CATALOG NO. H-115N

DESCRIPTION:

Chrysene 13103

N/A

SOLVENT:

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%.$ 

www.accustandard.com

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

218-01-9 100 N/A

Chrysene

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater.

A period (.) is used as a decimal place marker.

All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480
 Analyte Concentration = Purity x Gravimetric Concentration
 A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is <a href="identical">identical</a> to the same lot# without the suffix



125 Market Street New Haven, CT 06513 USA

## **CERTIFICATE OF ANALYSIS**

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-135N

DESCRIPTION:

Dibenz(a,h)anthracene

LOT:

N/A

SOLVENT:

13246

EXPIRATION: Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%.$ 

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Dibenz(a,h)anthracene

53-70-3 100 N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

1. All weights are traceable through National institute of Standards of Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration
3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the



125 Market Street New Haven, CT 06513

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-118N

DESCRIPTION:

Fluoranthene

LOT:

19762 N/A

SOLVENT:

EXPIRATION: Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%.$ 

Component

CAS#

**Purity %** 

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Fluoranthene

206-44-0 98.4 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma.(,) is used to separate units of one-thousand or greater. A period (;) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration
3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the

This product was manufactured to meet the quality system requirements of ISO 9001

QR/RG/INO-001 Rev. 11/02



125 Market Street New Haven, CT 06513

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-146N

DESCRIPTION:

Fluorene 19675

LOT:

SOLVENT:

EXPIRATION:

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Fluorene

86-73-7 100 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards &

1. All weights are traceanie through National institute of Standards & Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration
3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the suffix.

This product was manufactured to meet the quality system requirements of ISO 9001



N/A

125 Market Street New Haven, CT 06513 USA

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-157N

DESCRIPTION:

Indeno(1,2,3-cd)pyrene

LOT: 19641

SOLVENT:

EXPIRATION: Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

**Purity %** 

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Indeno(1,2,3-cd)pyrene

193-39-5 100 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480
2. Analyte Concentration = Purity x Gravimetric Concentration

3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the suffix.



125 Market Street New Haven, CT 06513

LOT:

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-152N DESCRIPTION:

Naphthalene

N/A

SOLVENT:

167A-A

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%.$ 

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Naphthalene

91-20-3

N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. Apperiod (.) is used as a decimal place marker.

All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480
 Analyte Concentration = Purity x Gravimetric Concentration
 A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is <a href="identical">identical</a> to the same lot# without the

This product was manufactured to meet the quality system requirements of ISO 9001



125 Market Street New Haven, CT 06513 USA

## CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 www.accustandard.com

CATALOG NO. H-122N

DESCRIPTION:

Phenanthrene

LOT:

090903AG-AC-1

N/A SOLVENT:

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Phenanthrene

85-01-8

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels. A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

1. All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480

2. Analyte Concentration = Purity x Gravimetric Concentration

3. A product with a suffix (-1A, -2B, etc.) on its lot# has had its

expiration date extended and is identical to the same lot# without the suffix.



125 Market Street New Haven, CT 06513

CERTIFICATE OF ANALYSIS

Ph: 203-786-5290 Fax: 203-786-5287 E-mail: usa@accustandard.com www.accustandard.com

CATALOG NO. H-123N

LOT:

**DESCRIPTION:** 

Pyrene

09617LB N/A

SOLVENT:

EXPIRATION:

Jun 3, 2007

Maximum uncertainty in the measurement of the purity is  $\pm 0.5\%$ .

Component

CAS#

Purity %

Gravimetric Concentration<sup>1</sup> Analyte Concentration<sup>2</sup>

(GC/MS)

Pyrene

129-00-0 98.6 N/A

N/A

Please note: AccuStandard follows the U.S. conventions in reporting numerical values, on both certificates and labels.

A comma (,) is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.

 All weights are traceable through National Institute of Standards & Technology, Test No. 822/254480
 Analyte Concentration = Purity x Gravimetric Concentration
 A product with a suffix (-1A, -2B, etc.) on its lot# has had its expiration date extended and is identical to the same lot# without the suffix.

This product was manufactured to meet the quality system requirements of ISO 9001

### CIL

#### CAMBRIDGE ISOTOPE LABORATORIES

50 Frontage Road, Andover, Massachusetts 01810

# Certificate of Analysis

Cambridge Isotope Laboratories, Inc. certifies that this material meets or exceeds the specifications stated. Absolute identity as well as chemical and isotopic purities are assured by the use of unambiguous synthetic routes and multiple chemical analyses whenever possible.

Authorized Signature:

Product Name:

Hugh D. Conton, Ph.D., Quality Control Manager

(Isotopic Label, Isotopic Enrichment)

Dibenzo[a,e]pyrene (Unlabeled)

Unlabeled CAS Number: 192-65-4

Labeled CAS Number NA

Catalog Number:

**ULM-1226** 

Chemical Purity: 98%+

Molecular Weight: 302.4

Chemical Formula: C24H14

### CIL Quality Control Data

Sample compares favorably to known standard for identity and purity. Enrichment meets or exceeds stated specification.

Mass Spectrometry

Pass

GC/FID HPLC

Pass

FTIR

Pass

Storage:

Store at room temperature away from light and moisture.

Expiration:

Stable if stored under recommended conditions.

1-978-749-8000

1-800-322-1174 (USA)

1-800-643-7239 (Canada)

1-978-749-2768 (Fak)

Cambridge Isotope Laboratories

Page 2 of 2

Dibenzo[a,e]pyrene Section 7. Handling and Storage. (Unlabeled) ULM-1226 General warning: Possible human carcinogen.

Handling procedures: Avoid contact with eyes, skin, and clothing.

Storage procedures: Store at room temperature away from light and moisture. Keep closed Hygiene instructions:

Wash thoroughly after handling. Use only in a chemical fume hood.

Section 8. Exposure Controls and Personal Protection.

General controls: Do not breathe vapor. Only experienced personnel should be allowed to handle this material.

Eye/face protection: Chemical safety goggles. Skin Protection:

Wear suitable protective clothing Respiratory protection: Cartridge type respirator with organic vapor cartridges recommended.

Section 9. Physical/Chemical Characteristics.

Molecular weight: Autoignition temperature: Unknown. Appearance:

Pale yellow needles. Flash point/Method: Unknown. Odor: Unknown. Melting point: 233°C, 225°C (in vacuo)

Physical state: Solid. Boiling point: Unknown. pH: Unknown. Freezing point: Unknown Vapor pressure: Unknown

Vapor density: Unknown. Solubility in water: Insoluble. Specific gravity/density: Unknown.

Section 10. Stability and Reactivity.

Chemical stability Stable if stored under recommended conditions. Conditions to Avoid:

Incompatibility:

Oxidized by sodium dichromate in glacial acetic acid; reacts with Bromine or Acetyl chloride. Hazardous Decomposition: Unknown. Hazardous Polymerization: Will not occur.

Section 11. Toxicological Information (see Section 3 on first page).

Acute data: May be harmful if swallowed, inhaled, or absorbed through skin.

It should be assumed to have toxic effects and, therefore, procedures appropriate for the

safe handling of hazardous chemicals should be followed

Chronic data IARC 2B The agent is possibly carcinogenic to humans. NTP Group 2

Substances or group of substances which may reasonably be anticipated to be carcinogens.

Section 12. Ecological Information (impact if released into environment).

Data not yet available

Section 13. Disposal considerations.

Waste materials should be disposed of under conditions which meet Federal, State, and Local environmental control regulations.

Section 14. Transport Information.

Data not available.

Section 15. Regulatory Information.

Data not available.

Section 16. Other Information.

Data not available

- 144 -



660 Tower Lane • P.O. Box 599 • West Chester, PA 19381-0599 1-800-452-9994 • 1-610-692-3026 • Fax 1-610-692-8729 info@chemservice.com • www.chemservice.com

## CERTIFICATE OF ANALYSIS

INVOICE #: CS253100

PO #: 29279

CATALOG #: O-788

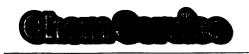
CAS #: 91-57-6

DESCRIPTION: 2-Methylnaphthalene

LOT #: 310-43C

PURITY: 98%

**EXPIRATION DATE: 09/08** 


Chem Service, Inc. guarantees the purity of this chemical  $\pm$  0.5% deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, FTIR, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conrad CSM/TC



660 Tower Lane • P.O. Box 599 • West Chester, PA 19381-0599 1-800-452-9994 • 1-610-692-3026 • Fax 1-610-692-8729 info@chemservice.com • www.chemservice.com

# CERTIFICATE OF ANALYSIS

INVOICE #: CS253100

PO #: 29279

CATALOG #: O-787 CAS #: 90-12-0

DESCRIPTION: 1-Methylnaphthalene

LOT #: 325-31A

PURITY: 98%

**EXPIRATION DATE: 05/09** 

Chem Service, Inc. guarantees the purity of this chemical  $\pm$  0.5% deviation prior to the expiration date shown on the label and exclusive of any customer contamination.

Two or more of the following methods of analysis are used to determine purity: Melting point, refractive index, titration, FTIR, IR, TLC, GC/FID, GC/TCD, GC/ECD, GC/MS, HPLC or DSC.

Our standards are suitable for use with all EPA methods.

Certified By:

John Conrad CSM/TC - 146 -

ExternalProductDisplay

Page 1 of 1



# Certificate : Analysis

Product Name Product Number CAS Number

Molecular Formula Molecular Weight Perylene

39,447-5 198-55-0

C<sub>20</sub>H<sub>12</sub> 252.3

TEST

**SPECIFICATION** 

PECIFICATION

LOT 20330PO RESULTS

APPEARANCE

ORANGE POWDER OR CRYSTALS AND/OR CHUNKS

ORANGE CRYSTALLINE POWDER CONFORMS TO

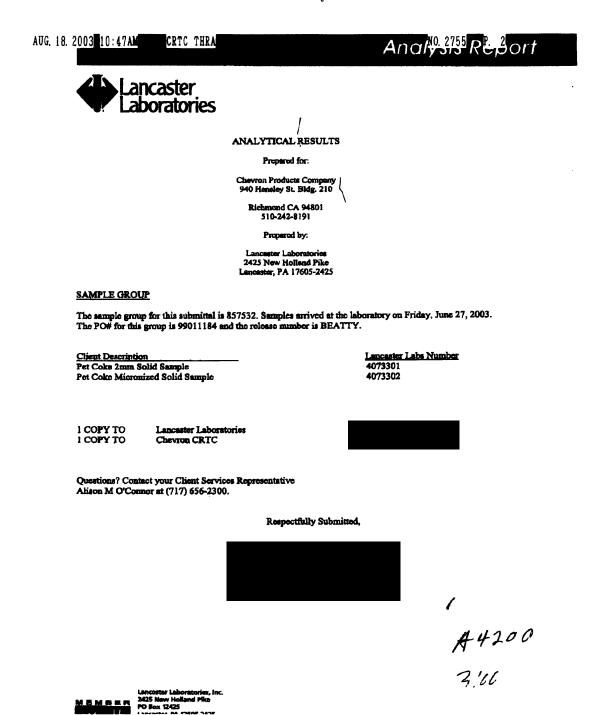
STRUCTURE.

HIGH PRESSURE LIQUID CHROMATOGRAPHY QUALITY CONTROL ACCEPTANCE DATE

INFRARED SPECTRUM

CONFORMS TO STRUCTURE AND STANDARD AS ILLUSTRATED ON PAGE 968A OF EDITION I, VOLUME 1 OF 'THE ALDRICH LIBRARY OF FT-IR SPECTRA'.
99.50% (MINIMUM)

99.52%


DECEMBER 2001

Ronnie J Martin, Supervisor Quality Control

**AMENDED** 

- 147 -

## **Chevron Metals Analyses**



- 148 -

AUG. 18. 2003 10:47AM CRTC THRA

Analysis Report



Page 1 of 2

Lancaster Laboratories Sample No. SW 4073302

Collected: 06/26/2003 00:00

Account Number: 10863

Submitted: 06/27/2003 10:40 Reported: 07/09/2003 at 11:42 Chevron Products Company 940 Hensley St. Bldg. 210

Discard: 08/09/2003

Richmond CA 94801

Pet Coke Micronized Solid Sample

Cost Center# ENG-4066 HPV Petroleum Cake

MICPC

| CAT<br>No. | Analysis Hame                                             | Cas Runber | As Receiv<br>Result | ed.   | As Received<br>Mathod<br>Detection<br>Limit | Units | Dilution<br>Factor |
|------------|-----------------------------------------------------------|------------|---------------------|-------|---------------------------------------------|-------|--------------------|
| 07804      | PARs in Soil by GC/MS                                     |            |                     |       |                                             |       |                    |
| 01191      | Acenaphthene                                              | 83-32-9    | N.D,                |       | 1,000.                                      | ug/kg | 10                 |
| 01195      | Pyrene                                                    | 129-00-0   | 8,600.              | J     | 1,000.                                      | ug/kg | 10                 |
| 02751      | 1-Methylnaphthalene                                       | 90-12-0    | 10,000.             |       | 1,000.                                      | ug/kg | 10                 |
| 03761      | Naphthalene                                               | 91-20-3    | 11,000.             |       | 1,000.                                      | ug/kg | 10                 |
| 03765      | Acenaphthylene                                            | 208-96-8   | N.D.                |       | 1,000.                                      | ug/kg | 10                 |
| 03768      | Fluorene                                                  | 86-73-7    | 1,500.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03775      | Phenanthrene                                              | 85-01-8    | 7,800.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03776      | Anthracene                                                | 120-12-7   | 3,300.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03778      | Fluoranthene                                              | 206-44-0   | 1,400.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03781      | Bonzo(a)anthracene                                        | 56-55-3    | 7,100.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03782      | Chrysene                                                  | 218-01-9   | 9,400.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03786      | Benzo(b) fluoranthene                                     | 205-99-2   | 3,800.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03787      | Benzo(k) fluoranthene                                     | 207-08-9   | N.D.                |       | 1,000.                                      | ug/kg | 10                 |
| 03788      | Beaso (a) pyrene                                          | 50-32-8    | 11,000.             |       | 1,000.                                      | ug/kg | 10                 |
| 03789      | Indeno(1,2,3-cd)pyrene                                    | 193-39-5   | 3,500.              | J     | 1,000.                                      | ug/kg | 10                 |
| 03790      | Dibenz (a, h) anthracene                                  | 53-70-3    | 4,100.              | 3     | 1,000.                                      | ug/kg | 10                 |
| 03791      | Benzo(g,h,i)perylene                                      | 191-24-2   | 8,700.              | J     | 1,000.                                      | ug/kg | 10                 |
| 04694      | 2-Methylnaphthalene                                       | 91-57-6    | 26,000.             |       | 1,000.                                      | ug/kg | 10                 |
|            | Due to sample matrix interferormal reporting limits could |            |                     | *trac | tion, the                                   |       |                    |

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised.

State of California Lab Certification No. 2116

Laboratory Chronicle

CAT Analysis Dilution
Mg. Analysis Wams Method . Trials Data and Time Analysis Factor
07804 PAHs in Soil by GC/MS SW-846 8270C 1 07/02/2003 18:34 Susan L Scheuering 10



- 149 -

AUG. 18. 2003 10:47AM CRTC THRA

Analysis Report



Page 2 of 2

Lancaster Laboratories Sample No. SW 4073302

Collected: 06/26/2003 00:00 Account Number: 10863

Submitted: 06/27/2003 10:40 Chevron Products Company Reported: 07/09/2003 at 11:42 940 Hensley St. Bldg. 210

Discard: 08/09/2003

Pet Coke Micronized Solid Sample

Cost Center# ENG-4066 HPV Petroleum Cake

MICPC

07806 BMA Soil Extraction SW-846 3550B 1 06/30/2003 20:00 Sally L Appleyard 1

Richmond CA 94801



AUG. 18. 2003 10:48AM

Anal Report



Page 1 of 1

Lancaster Laboratories Sample No. SW 4073301

Collected:06/26/2003 00:00

Submitted: 06/27/2003 10:40 Reported: 07/09/2003 at 11:42

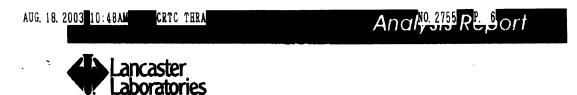
Discard: 08/09/2003 Pet Coke 2mm Solid Sample Cost Center# ENG-4066 HPV Petroleum Cake

Account Number: 10863

Chevron Products Company 940 Hensley St. Bldg. 210

Richmond CA 94801

2MMPC


| CAT<br>No. | Analysis Name                                                                 | CAS Humber | As Rece<br>Result | ived | As Received<br>Method<br>Detection<br>Limit | Units | Dilution<br>Factor |
|------------|-------------------------------------------------------------------------------|------------|-------------------|------|---------------------------------------------|-------|--------------------|
| 07804      | PAHs in Soil by GC/MS                                                         |            |                   |      |                                             |       |                    |
| 01191      | Acenaphthene                                                                  | 83-32-9    | N.D.              |      | 330.                                        | ug/kg | 10                 |
| 01195      | Pyrene                                                                        | 129-00-0   | 1,300.            | J    | 330.                                        | ug/kg | 10                 |
| 02751      | 1-Methylnaphthalene                                                           | 90-12-0    | 2,700.            | đ    | 330.                                        | ug/kg | 10                 |
| 03761      | Naphthalene                                                                   | 91-20-3    | 3,600.            |      | 330.                                        | ug/kg | 10                 |
| 03765      | Acenaphthylene                                                                | 208-96-8   | N.D.              |      | 330.                                        | ug/kg | 10                 |
| 03768      | Pluorene                                                                      | 86-73-7    | 340.              | J    | 330.                                        | ug/kg | 10                 |
| 03775      | Phenanthrene                                                                  | 85-01-8    | 690.              | J    | 330.                                        | ug/kg | 10                 |
| 03776      | Anthracene                                                                    | 120-12-7   | N.D.              |      | 330.                                        | ug/kg | 10                 |
| 03778      | Fluoranthone                                                                  | 205-44-0   | N.D.              |      | 330.                                        | ug/kg | 10                 |
| 03781      | Benzo (a) anthracena                                                          | 56~55=3    | 580.              | J    | 330.                                        | ug/kg | 10                 |
| 03782      | Chrysene                                                                      | 218-01-9   | 880.              | J    | 330.                                        | ug/kg | 10                 |
| 03786      | Bonzo (b) fluoranthene                                                        | 205-99-2   | 520.              | J    | 330.                                        | ug/kg | 10                 |
| 03787      | Benzo(k) fluoranthene                                                         | 207-08-9   | N.D.              |      | 330.                                        | ug/kg | 10                 |
| 03788      | Benzo(a)pyrene                                                                | 50-32-8    | 1,800.            | 3    | 330.                                        | ug/kg | 10                 |
| 03789      | Indeno (1, 2, 3-cd) pyrene                                                    | 193-39-5   | 340.              | J    | 330.                                        | ug/kg | 10                 |
| 03790      | Dibenz (a, h) anthrocene                                                      | 53-70-3    | 490.              | 3    | 330.                                        | ug/kg | 10                 |
| 03791      | Bonzo(g,h,i)perylane                                                          | 191-24-2   | 1,100.            | J    | 330.                                        | ug/kg | 10                 |
| 04694      | 2-Methylnaphthalene                                                           | 91-57-6    | 11,000.           | -    | 330.                                        | ug/kg | 10                 |
|            | Due to the sample matrix an analysis. Therefore, the recompounds were raised. |            |                   |      |                                             |       |                    |

State of California Lab Certification No. 2116

Analysis Name PARs in Soil by GC/NS DNA Soil Extraction

Laboratory Chronicle | Analysis | Trial\* | Date and Time | Analyst | 1 07/02/2003 15:41 | Susan L Schouering | 1 06/30/2003 20:00 | Selly L Appleyard Dilution Mathod SW-846 8270C SW-846 3550B 10

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425



Page 1 of 2

## Quality Control Summary

Client Name: Chevron Products Company

Group Number: 857532

Reported: 07/09/03 at 11:42 AM

## Laboratory Compliance Quality Control


| Analysis Name              | Blank<br>Regult | Blank<br>MDL | Report<br>Units | LCS<br>MEC | LCSD<br>AREC | ics/icsD<br>Limits | RED | RIPO Max |
|----------------------------|-----------------|--------------|-----------------|------------|--------------|--------------------|-----|----------|
| Batch number: 031818LA026  | Sample n        | umber(s):    | 4073301-40      | 73302      |              |                    |     |          |
| Acenaphthene               | N.D.            | 33.          | ug/kg           | 91         |              | 76-109             |     |          |
| Pyrene                     | W.D.            | 33.          | ug/kg           | 89         |              | 71-110             |     |          |
| 1-Methylnaphthalenc        | N.D.            | 33.          | ug/kg           | 87         |              | 76-101             |     |          |
| Naphthalene                | N.D.            | 33.          | ug/kg           | 87         |              | 73-103             |     |          |
| Acenaphthylone             | N.D.            | 33.          | ug/kg           | 94         |              | 73-106             |     |          |
| Fluorene                   | и.D.            | 33.          | ug/kg           | 93         |              | 66-115             |     |          |
| Phenanthrene               | N.D.            | 33.          | ug/kg           | 88         |              | 70-107             |     |          |
|                            |                 |              |                 | 86         |              | 71-107             |     |          |
| Anthrecene                 | N.D.            | 33.          | ug/kg           |            |              |                    |     |          |
| Fluoranthene               | N.D.            | 33.          | ug/kg           | 90         |              | 69-107             |     |          |
| Henzo (a) anthracene       | N.D.            | 33 <i>.</i>  | ug/kg           | 93         |              | 74-107             |     |          |
| Chrysone                   | N.D.            | 39.          | ug/kg           | 89         |              | 72-109             |     |          |
| Benzo (b) fluoranthene     | N.D.            | 33.          | ug/kg           | 95         |              | 71-113             |     |          |
| Benzo (k) fluoranthene     | N.D.            | 33.          | ug/kg           | 97         |              | 75-112             |     |          |
| Benzo (a) pyrane           | W.D.            | 33.          | ug/kg           | 94         |              | 79-111             |     |          |
| Indeno (1, 2, 3-cd) pyrene | N.D.            | 33.          | ug/kg           | 88         |              | 74-113             |     |          |
| Dibenz (s, h) anthracene   | w.b.            | 33.          | ug/kg           | 95         |              | 91-118             |     |          |
| Benzo(g,h,i)perylene       | N.D.            | 33.          | ug/kg           | 92         |              | 74-114             |     |          |
| 2-Methylnaphthalene        | N.D.            | 33.          | ug/kg           | 90         |              | 70-102             |     |          |

## Sample Matrix Quality Control

|                           | 168         | MED         | M8/M8D         |          | RPD | nic. | DUP  | DUP | Dup<br>1290 |
|---------------------------|-------------|-------------|----------------|----------|-----|------|------|-----|-------------|
| Analysis Fame             | <b>HEEC</b> | <b>AREC</b> | Linite         | RED      | MI  | Conc | Cona | RPD | Max         |
| Batch number: 031818LA026 | Sample      | number      | (s): 40733     | 01-40733 | 102 |      |      |     |             |
| Acenaphthene              | 107         | 93          | 48-132         | 14       | 30  |      |      |     |             |
| Pyrene                    | 82          | 69          | 28-144         | 12       | 30  |      |      |     |             |
| 1-Methylnaphthalane       | 75          | 67*         | 72-100         | 5        | 30  |      |      |     |             |
| Waphthalene               | 77          | 61          | 38-132         | 9        | 30  |      |      |     |             |
| Acenaphthylene            | 108         | 91          | 46-128         | 18       | 30  |      |      |     |             |
| Fluorene                  | 88          | 75          | 39-137         | 14       | 30  |      |      |     |             |
| Phonanthrens              | 88          | 74          | 29-143         | 13       | 30  |      |      |     |             |
| Anthracene                | 101         | 85          | 3 <b>5-138</b> | 17       | 30  |      |      |     |             |
| Fluoranthene              | 91          | 72          | 19-145         | 11       | 30  |      |      |     |             |
| Benzo (a) anthracene      | 89          | 75          | 26-144         | 14       | 30  |      |      |     |             |
| Chrysene                  | 101         | 90          | 23-150         | 9        | 30  |      |      |     |             |
| Benzo (b) fluoranthene    | 90          | 74          | 32-140         | 16       | 30  |      |      |     |             |
| Bonzo (k) fluoranthene    | 103         | 88          | 36-143         | 16       | 30  |      |      |     |             |
| Benzo(a) pyrene           | 90          | 72          | 23-154         | 13       | 30  |      |      |     |             |
| Indeno(1,2,3-cd)pyrene    | 92          | 78          | 13-155         | 15       | 30  |      |      |     |             |
| Dibons (a, h) anthracens  | 110         | 86          | 19-163         | 19       | 30  |      |      |     |             |
| Benzo(g, h, i) perylene   | 99          | 83          | 17-152         | 13       | 30  |      |      |     |             |
| 2-Methylnaphthalene       | 38          | 19*         | 32-133         | 6        | 30  |      |      |     |             |

- \*- Outside of specification
  (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.





Page 2 of 2

## Quality Control Summary

Client Name: Chevron Products Company Reported: 07/09/03 at 11:42 AM

Group Number: 857532

Sample Matrix Quality Control

DUZ KPD DUP Dup RPD Analysis Feme RPD RPD Conc

#### Surrogate Quality Control

Analysis Name: PAHs in Soil by GC/MS Batch number: 03181812A026

|         | Mitrobeniane-d5 | 2-Pluorobiphenyl | Terphanyl-d14 |  |
|---------|-----------------|------------------|---------------|--|
| 4073301 | 101             | 108              | 92            |  |
| 4073302 | 101             | 99               | 84            |  |
| Blank   | 87              | 85               | 83            |  |
| LÇS     | 94              | 92               | 93            |  |
| MS      | 105             | 107              | 86            |  |
| MSD     | 90              | 90               | 78            |  |
| Limits: | 47-128          | 55-123           | 39-128        |  |

\* Outside of specification

<sup>(2)</sup> The background result was more than four times the spike added.



M B Ne III E FI

Landanter Laboratories, Inc.
2425 New Holland Pile
PO Box 12425

Landanter Laboratories, Inc.
2425 New Holland Pile
PO Box 12425

Landanter Laboratories, Inc.

<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

- 153 -

# **Lancaster Laboratory PAH Analyses**

```
Sent:
To:
Co:
                   Found your results.
Subject:
                                                                   Micronized
                                 YCJ58009 REGULAR SERVICE
3030999 PETROLEUM COKE 2NM
    REPORTED 06/13/2003 Marked-up: 06/12/2003 by
                                                  at 50-1118
                             Prj Id: GLOBETECH
              (474/0)
 Test code Test Name/Element/Result Test Status Analyst Status date Test Cost
                                                      06/13/2003 $200.00
 30258 MICROWAVE DIGST/ICP PLUS REPORTED
                                           <29.61 PPM
                                      В
  AL 300.200 PPM
                    AS
                        <29.61 PPM
                                       BI <29.61 PPM
                    BE
                         <14.805 PPM
       <29.61 PPM
  BA
                                       CO <14.805 PPM
  CA 121.600 PPM
                        <14.805 PPM
                    CD
  CR <14.805 PPM
                    CU <17.766 PPM
                                       FE 247,000 PPM
                                      MG 60.850 PPM
      <44.414 PPM
                    LI <14.805 PPM
  K
                    MO <29.61 PPM
                                       NA 114.600 PPM
  MN <29.61 PPM
                                     PB <29.61 PPM
  NI 351.700 PPM
                        30,300 PPM
                    SB <74.024 PPM
                                      SE <29.61 PPM
  S 58060.000 PPM
                                      TI <14.805 PPM
  SI 554.600 PPM
                    SN
                        <44.414 PPM
                    ZN <14.805 PPM
      1805.000 PPM
                                                                    2mm
3030251 PETROLEUM COKE
                                YCJ58009 REGULAR SERVICE
    REPORTED 06/09/2003 Marked-up: 06/09/2003 by
                                                    at 50-1118
              474/0)
                             Prj Id:
 Test code Test Name/Element/Result Test Status Analyst Status date Test Cost
                                              TMEAH 06/09/2003 $200.00
 30258 MICROWAVE DIGST/ICP PLUS REPORTED
                                       B <19.279 PPM
  AL 321.000 PPM
                     AS <19.279 PPM
                         <9.639 PPM
  BA <19.279 PPM
                                       BI <19.279 PPM
                     BE
                                       CO
                                            <9.639 PPM
  CA 178.000 PPM
                     CD
                        <9.639 PPM
  CR
       <9.639 PPM
                    CU <11.567 PPM
                                       FE 310.000 PPM
                                      MG
                                           77.370 PPM
  K
      <28.918 PPM
                    Ц
                        <9.639 PPM
  MN <19.279 PPM
                     MO <19.279 PPM
                                        NA 133.000 PPM
  NI 367.100 PPM
                        <19.279 PPM
                                      PB <19.279 PPM
       73920 PPM
                                      SE
                                          <19.279 PPM
                   SB
                        <48.197 PPM
  SI
      743.200 PPM
                    SN
                         <28.918 PPM
                                       TI 12.910 PPM
      1938.000 PPM
                    ZN
                         12.010 PPM
```

----Original Message----Promi - 154 -

# Aveka, Inc. Milled Particle Size Analysis



PARTICLE PROCESSING & CUSTOM RESEARCH

Date: May 29, 2003

Make Order #: 5369

Company Name: API

**Contact Person:** 

Material: Coron Petroleum Coke

Objective: Task 1: Hammermill, Ball-mill and Classify Petroleum Coke to a mean particle size less than 3.6 microns. Task 2: Crush and Classify petroleum coke to a mean particle size of 2 mm.

Equipment: Homoloid JT Hammermill (SN # JT-694) with 0.0093 screen

5 Gallon Ball-mill with 0.25 inch alumina media

Majac A-12 classifier

Horiba LA-910 Laser Light Scattering Particle Sizer

Marcy 4"x 6" Jaw Crusher Gilson Sonic Sieve

Receipt: Approximately 80 lbs. of material was received 3-19-03 from Federal Express. Confirmation of receipt (EPL Project Identification 1203-001) was returned upon delivery.

Storage: Petroleum coke was stored at room temperature in sealed polyethylene bags when the material was not being processed.

## **Processing Procedure:**

The green petroleum coke showed high moisture content upon inspection. The high moisture content was indicated by condensation on the inside of the received petroleum coke bags. After consulting with Deborah Herron and Jacobs Consultancy, the material was dried according to ASTM D 3302-00 (Standard Test Method for Total Moisture in Coal).

## Task 1

All processes were run at room temperature. The dried petroleum coke was then run through a Homoloid JT Hammermill (SN # JT-694) equipped with a 0.0093 screen.

The resulting hammermilled powder was loaded into 5-gallon ball mills loaded with 0.25 inch ceramic (alumina) media. The loading level in the ball mill was 27 lbs. of media with 5.5 lbs. of petroleum coke.

651-730-1729

2045 Wooddale Drive, Woodbury, MN 55125

FAX 651-730-1826



PARTICLE PROCESSING & CUSTOM RESEARCH

The mills were rotated at 36 rpm for 17.25 hours. The resulting powder had a mean particle size of 9.56 microns (Attch 1) when tested with the Horiba LA-910 in water.

The oversized petroleum coke material was removed using a Majac A-12 Classifier. The Majac was run at 1800 RPM and 8.5 cfm. The resulting particle size of the petroleum coke was a 3.3 micron mean (Attch. 2) when tested with the Horiba LA-910 in water. The Horiba LA-910 test method for the petroleum coke samples is outlined in Attch. 3.

The final yield of product was 10.5 kg of powder.

#### Task 2

All processes were run at room temperature. An 18" Sweco Screener was set-up with a 7 mesh (2.8 mm) top-screen and a 14 mesh (1.4 mm) bottom-screen. Petroleum coke was fed through the screener and 2-mm material was collected from between the top and bottom screen. Oversized petroleum coke was jaw crushed with a Marcy 4"x 6" Jaw Crusher and rescreened. A Gilson Sonic Sieve particle size analysis (Attch. 4) was run on the screened petroleum coke and the results showed 99.4 % of the material between 1.4 mm – 2.8 mm. Final yield was 3.3 kg of 2 mm Petroleum Coke.

## **Shipping**

All samples were shipped UPS Ground. The following is a summary of the sample disposition.

| Sample/Amount           | <u>Address</u>                | <u>Person</u> |
|-------------------------|-------------------------------|---------------|
| 200 grams of 2-3 micron | ChevronTexaco Energy Research | Richard Dutta |
| particle size sample    | and Technology Corp.          |               |
|                         | 100 Chevron Way               |               |
|                         | Richmond, CA 94802            |               |
|                         | Tel: 510-242-7037             |               |

FAX 651-730-1826

# AVEKA, INC.

| PARTI                                                                                                               | CLE PROCESSING & CUSTOM RESEAR                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ChevronTexaco Fnergy Research<br>and Technology Corp.<br>100 Chevron Way<br>Richmond, CA 94802<br>Tel: 510-242-7037 | Richard Dutta                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FPL Archives, Inc.<br>45610 Terminal Drive<br>Sterling, Virginia 20166<br>703/435-8780 ext 201                      | Sam Busey                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EPL Archives, Inc.<br>45610 Terminal Drive<br>Sterling, Virginia 20166<br>703/435-8780 ext 201                      | Sam Busey                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EPI. Archives, Inc.<br>45610 Terminal Drive<br>Sterling, Virginia 20166<br>703/435-8780 ext 201                     | Sam Busey                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                     | ChevronTexaco Fnergy Research and Technology Corp. 100 Chevron Way Richmond. CA 94802 Let: 510-242-7037 FPL Archives. Inc. 45610 Terminal Drive Sterling. Virginia 20166 703/435-8780 ext 201 FPL Archives, Inc. 45610 Terminal Drive Sterling. Virginia 20166 703/435-8780 ext 201 FPL Archives. Inc. 45610 Terminal Drive Sterling. Virginia 20166 703/435-8780 ext 201 FPL Archives. Inc. 45610 Terminal Drive Sterling. Virginia 20166 |

651-730-1729 **2045 Wooddale Drive, Woodbury, MN** 55125

FAX 651-730-1826

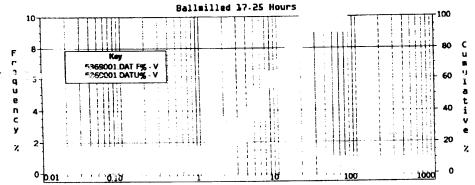
# Attch 1

## HORIBA LA-910

PARTICLE SIZE DISTRIBUTION DATA TABLE Standard 04/23/03

File Name: 5369001.DAT Sample Name: Ballmilled 17.25 Hours ID No: \*\*/04/23-350

Dist. Form: STANDARD R.R. Index: ∞.mj□


Dist. Mode: VOLUME Laser: 65.128 % Lamp: 61.185 % Circulation: 2 Agitation: 7 U.Sonic \*\* (min)

Circulation: 2 Agitation: 7

Material: Petroleum Coke

Source: American Petroleum

Lot No: MO5369 Test No: 5369001



| Di  | ameter  | (um)         |
|-----|---------|--------------|
| ,,, | ame ce: | \ \mu_{mm} / |

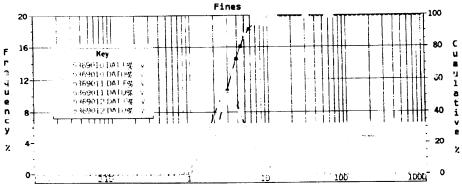
|                                                                                      |                                                                                        | 1.5                                                  | ***.1                                                | 44.1                                                                                 | SIZE (jum)                                                                           | FREQS                                                              | UNDR%                                                                | No.                                                                          | SIZE (pm)                                                                                       | FREQU                                  | UNDR*                                                                |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|
| ( 1)                                                                                 | U.UZU                                                                                  | U. U                                                 | v.u                                                  | (48)                                                                                 | 0.766                                                                                | 0.5                                                                | 0.8                                                                  | (55)                                                                         | 29.907                                                                                          | 1.5                                    | 95.4                                                                 |
| (2)                                                                                  | 0.022                                                                                  | 0.0                                                  | 0.0                                                  | (29)                                                                                 | 0.877                                                                                | 0.8                                                                | 1.6                                                                  | (56)                                                                         | 34.255                                                                                          | 1.2                                    | 96.6                                                                 |
| (3)                                                                                  | 0.026                                                                                  | 0.0                                                  | 0.0                                                  | (30)                                                                                 | 1.005                                                                                | 1.2                                                                | 2.8                                                                  | (57)                                                                         | 39.234                                                                                          | 0.9                                    | 97.5                                                                 |
| (4)                                                                                  | 0.029                                                                                  | 0.0                                                  | 0.0                                                  | (31)                                                                                 | 1.151                                                                                | 1.6                                                                | 4.4                                                                  | (58)                                                                         | 44.938                                                                                          | 0.7                                    | 98.2                                                                 |
| (5)                                                                                  | 0.034                                                                                  | 0.0                                                  | 0.0                                                  | (32)                                                                                 | 1.318                                                                                | 2.0                                                                | 6.3                                                                  | (59)                                                                         | 51.471                                                                                          | 0.5                                    | 98.8                                                                 |
| (6)                                                                                  | 0.039                                                                                  | 0.0                                                  | 0.0                                                  | (33)                                                                                 | 1.510                                                                                | 2.3                                                                | 8.7                                                                  | (60)                                                                         | 58.953                                                                                          | 0.4                                    | 99.2                                                                 |
| (7)                                                                                  | 0.044                                                                                  | 0.0                                                  | 0.0                                                  | (34)                                                                                 | 1.729                                                                                | 2.6                                                                | 11.3                                                                 | (61)                                                                         | 67.523                                                                                          | 0.3                                    | 99.5                                                                 |
| (8)                                                                                  | 0.051                                                                                  | 0.0                                                  | 0.0                                                  | (35)                                                                                 | 1.981                                                                                | 2.9                                                                | 14.2                                                                 | (62)                                                                         | 77.340                                                                                          | 0.2                                    | 99.7                                                                 |
|                                                                                      | 0.051                                                                                  | 0.0                                                  | 0.0                                                  | (36)                                                                                 | 2.269                                                                                | 3.0                                                                | 17.2                                                                 | (63)                                                                         | 88.582                                                                                          | 0.2                                    | 99.9                                                                 |
| (9)                                                                                  |                                                                                        |                                                      | 0.0                                                  | (37)                                                                                 | 2.599                                                                                | 3.2                                                                | 20.4                                                                 | (64)                                                                         | 101.460                                                                                         | 0.1                                    | 100.0                                                                |
| (10)                                                                                 | 0.067                                                                                  | 0.0                                                  | 0.0                                                  | (38)                                                                                 | 2.976                                                                                | 3.5                                                                | 23.9                                                                 | (65)                                                                         | 116.210                                                                                         | 0.0                                    | 100.0                                                                |
| (11)                                                                                 | 0.076                                                                                  | 0.0                                                  | 0.0                                                  | (39)                                                                                 | 3.409                                                                                | 3.7                                                                | 27.7                                                                 | (66)                                                                         | 133.103                                                                                         | 0.0                                    | 100.0                                                                |
| (12)<br>(13)                                                                         | 0.087<br>0.100                                                                         | 0.0                                                  | 0.0                                                  | (40)                                                                                 | 3.905                                                                                | 4.0                                                                | 31.6                                                                 | (67)                                                                         | 152.453                                                                                         | 0.0                                    | 100.0                                                                |
|                                                                                      |                                                                                        |                                                      | 0.0                                                  |                                                                                      | 4.472                                                                                | 4.3                                                                | 35.9                                                                 | (68)                                                                         | 174.616                                                                                         | 0.0                                    | 100.0                                                                |
| (14)                                                                                 | 0.115                                                                                  | 0.0                                                  |                                                      | (41)                                                                                 |                                                                                      | 4.6                                                                | 40.6                                                                 | (69)                                                                         | 200.000                                                                                         | 0.0                                    | 100.0                                                                |
| (15)                                                                                 | 0.131                                                                                  | 0.0                                                  | 0.0                                                  | (42)                                                                                 | 5.122<br>5.867                                                                       | 5.1                                                                | 45.6                                                                 | (70)                                                                         | 229.075                                                                                         | 0.0                                    | 100.0                                                                |
| (16)                                                                                 | 0.150                                                                                  | 0.0                                                  | 0.0                                                  | (43)                                                                                 |                                                                                      |                                                                    | 51.2                                                                 | (71)                                                                         | 262.376                                                                                         | 0.0                                    | 100.0                                                                |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
|                                                                                      |                                                                                        |                                                      |                                                      |                                                                                      |                                                                                      |                                                                    |                                                                      |                                                                              |                                                                                                 |                                        |                                                                      |
| (17)<br>(18)<br>(19)<br>(20)<br>(21)<br>(22)<br>(23)<br>(24)<br>(25)<br>(26)<br>(27) | 0.172<br>0.197<br>0.226<br>0.259<br>0.296<br>0.339<br>0.389<br>0.445<br>0.510<br>0.584 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | (44)<br>(45)<br>(46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51)<br>(52)<br>(53)<br>(54) | 7.697<br>8.816<br>10.097<br>11.565<br>13.246<br>15.172<br>17.377<br>19.904<br>22.797 | 5.5<br>5.9<br>6.0<br>5.8<br>5.4<br>4.8<br>4.2<br>3.5<br>2.9<br>2.3 | 51.2<br>57.0<br>68.8<br>74.2<br>79.1<br>83.3<br>86.8<br>89.7<br>92.0 | (71)<br>(72)<br>(73)<br>(74)<br>(75)<br>(76)<br>(77)<br>(78)<br>(79)<br>(80) | 300.518<br>344.205<br>394.244<br>451.556<br>517.200<br>592.387<br>678.504<br>777.141<br>890.116 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 |

Median : 6.533 (µm) Mean: 9.561 (µm) Mode: 8.237 (µm) Std. Dev.: 10.531 (µm) Span: 10.623 Coef. Var: 110.14% Spec. Area: 15308 (cm2/cm3)

Attch. 2

## **HORIBA LA-910**

PARTICLE SIZE DISTRIBUTION DATA TABLE Standard 05/15/03


File Name: 5369011.DAT Sample Name: Fines ID No: \*\*/04/30-566

Dist. Form: STANDARD R.R. Index: co.mj ...

Dist. Mode: VOLUME Laser: 85.118 % Lamp: 86.338 % Circulation: 3 Agitation: 7 U.Sonic OFF (min)

Circulation: 3 Agitation: 7 U.Sonic OFF (min)
Material: Petroleum Coke Source: American Petroleum

Lot No: MO5369 Test No: 5369004



| Diameter | (µm) |
|----------|------|
|----------|------|

| No.  | SIZE (1200) | FREQS | UNDR* | No.  | Sīde (pm) | FREQS | UNDRS | tio. | SIZE (pm) | FREQU | UNDR  |
|------|-------------|-------|-------|------|-----------|-------|-------|------|-----------|-------|-------|
| (1)  | 0.020       | 0.0   | 0.0   | (28) | 0.766     | 0.2   | 0.2   | (55) | 29.907    | 0.0   | 100.0 |
| (2)  | 0.022       | 0.0   | 0.0   | (29) | 0.877     | 0.5   | 0.7   | (56) | 34.255    | 0.0   | 100.0 |
| (3)  | 0.026       | 0.0   | 0.0   | (30) | 1.005     | 1.0   | 1.7   | (57) | 39.234    | 0.0   | 100.0 |
| (4)  | 0.029       | 0.0   | 0.0   | (31) | 1.151     | 1.7   | 3.5   | (58) | 44.938    | 0.0   | 100.0 |
| (5)  | 0.034       | 0.0   | 0.0   | (32) | 1.318     | 2.8   | 6.3   | (59) | 51.471    | 0.0   | 100.0 |
| (6)  | 0.039       | 0.0   | 0.0   | (33) | 1.510     | 4.3   | 10.6  | (60) | 58.953    | 0.0   | 100.0 |
| (7)  | 0.044       | 0.0   | 0.0   | (34) | 1.729     | 5.9   | 16.5  | (61) | 67.523    | 0.0   | 100.0 |
| (8)  | 0.051       | 0.0   | 0.0   | (35) | 1.981     | 7.6   | 24.1  | (62) | 77.340    | 0.0   | 100.0 |
| (9)  | 0.058       | 0.0   | 0.0   | (36) | 2.269     | 9.0   | 33.0  | (63) | 88.582    | 0.0   | 100.0 |
| (10) | 0.067       | 0.0   | 0.0   | (37) | 2.599     | 10.1  | 43.1  | (64) | 101.460   | 0.0   | 100.0 |
| (11) | 0.076       | 0.0   | 0.0   | (38) | 2.976     | 10.6  | 53.7  | (65) | 116.210   | 0.0   | 100.0 |
| (12) | 0.087       | 0.0   | 0.0   | (39) | 3.409     | 10.2  | 63.8  | (66) | 133.103   | 0.0   | 100.0 |
| (13) | 0.100       | 0.0   | 0.0   | (40) | 3.905     | 9.0   | 72.9  | (67) | 152.453   | 0.0   | 100.0 |
| (14) | 0.115       | 0.0   | 0.0   | (41) | 4.472     | 7.6   | 80.4  | (68) | 174.616   | 0.0   | 100.0 |
| (15) | 0.131       | 0.0   | 0.0   | (42) | 5.122     | 6.0   | 86.5  | (69) | 200.000   | 0.0   | 100.0 |
| (16) | 0.150       | 0.0   | 0.0   | (43) | 5.867     | 4.6   | 91.1  | (70) | 229.075   | 0.0   | 100.0 |
| (17) | 0.172       | 0.0   | 0.0   | (44) | 6.720     | 3.4   | 94.5  | (71) | 262.376   | 0.0   | 100.0 |
| (18) | 0.197       | 0.0   | 0.0   | (45) | 7.697     | 2.3   | 96.8  | (72) | 300.518   | 0.0   | 100.0 |
| (19) | 0.226       | 0.0   | 0.0   | (46) | 8.816     | 1.5   | 98.3  | (73) |           | 0.0   | 100.0 |
| (20) | 0.259       | 0.0   | 0.0   | (47) | 10.097    | 0.9   | 99.1  | (74) |           | 0.0   | 100.0 |
| (21) | 0.296       | 0.0   | 0.0   | (48) | 11.565    | 0.5   | 99.6  | (75) |           | 0.0   | 100.0 |
| (22) | 0.339       | 0.0   | 0.0   | (49) | 13.246    | 0.2   | 99.9  | (76) |           | 0.0   | 100.0 |
| (23) | 0.389       | 0.0   | 0.0   | (50) | 15.172    | 0.1   | 100.0 | (77) |           | 0.0   | 100.0 |
| (24) |             | 0.0   | 0.0   | (51) | 17.377    | 0.0   | 100.0 | (78) |           | 0.0   | 100.0 |
| (25) |             | 0.0   | 0.0   | (52) |           | 0.0   | 100.0 | (79) |           | 0.0   | 100.0 |
| (26) | 0.584       | 0.0   | 0.0   | (53) | 22.797    | 0.0   | 100.0 | (80) |           | 0.0   | 100.0 |
| (27) | 0.669       | 0.0   | 0.0   | (54) | 26.111    | 0.0   | 100.0 | (81) | 1019.510  | 0.0   | 100.0 |

Median : 2.840 (µm) Mean: 3.289 (µm) Mode: 2.781 (µm) Std. Dev.: 1.844 (µm) Span: 2.780 Coef. Var: 56.08% Spec. Area: 23790 (cm2/cm3)

- 159 -

Attch. 3

## TEST METHOD FOR API PETROLEUM COKE

#### Sample Preparation

May 15, 2003

Mix 0.15-0.2 grams of petroleum coke with 5-6 grams distilled water. Add TX-100 surfactant to aid dispersion. Mix thoroughly until no large concentrations of sample are evident.

## **LA-910 Preparation**

Fill the test chamber to capacity with 140 ml distilled water. Add 3-4 drops of TX-100 surfactant from a 10% concentrate source, resulting in approximately a .1% diluted total. Select the relative refractive index appropriate for this material (1.61-3.02i). Circulate the solvent using a pump speed of 2-3, subtract the background. Add the sample drop by drop until the laser transmission falls into the acceptable range (70 – 95)% transmittance. Activate the sonicator to aid dispersion, cease sonication when sample is completely dispersed.

#### Sample Test

Measure the sample three times. Save each measurement. Overlay the three measurements on a graph. If they appear stable, the test is complete. If not, investigate. A steady increase in the laser transmission rate indicates more particles are present from pass to pass. That indicates the sample was not completely dispersed yet. A steady decrease in the laser transmission rate indicates the sample is agglomerating, settling, or dissolving.

#### Report

Using the Display module, graph the three test runs over one another. A stable test will appear as one line, an unstable condition will clearly show all three runs, indicating instability. If stable, select a run (typically the middle run) and print the complete data table along with the graph.

Author: T.J. Roberts Lab Manager Aveka, Inc. (651) 714-4293 ext 208

| Sample ID: American<br>2mm Pet. Coke | Semple ID: American Petroleum Institute<br>Imm Pet. Coke |              | Sieve Analysis |            |              | 5/29/03              | ,<br>03 |
|--------------------------------------|----------------------------------------------------------|--------------|----------------|------------|--------------|----------------------|---------|
| - Standard                           | Mesh Opening                                             | Sieve Weight | Sieve Weight   | Weignt of  | Sample       | A CAMPAGE CONTRACTOR |         |
|                                      | (Mineral)                                                | (Srams)      | + Sample (g)   | Sample (g) | A seve Sieve | ्राधील डेस्टरम       |         |
| Mesh Size                            | (MICCOIIS)                                               | (20.03       | 50.975         | 0 024      | 0.31         | 69 66                |         |
| 7                                    | 2800                                                     | 30.831       | 52 146         | 1 405      | 18.18        | 81.53                |         |
| 80                                   | 2360                                                     | 30 741       | 25. 30         | 2,063      | 29.14        | \$2.55               |         |
| 10                                   | 2000                                                     | 48 772       | 51 024         | 707.7      |              |                      |         |
| 12                                   | 1700                                                     | 47.324       | 50.173         | 2 849      | 36.86        | 15.51                |         |
| 14                                   | 1400                                                     | 48.450       | 49 624         | 1 174      | 15.19        | 0.32                 |         |
| catch                                | 0                                                        | 220.018      | 220.043        | 0 025      | 0.32         | 0.60                 |         |
|                                      |                                                          |              | Totaks:        | 7.729      | 100.00       |                      |         |

Attch. 4

- 161 -

# Appendix 5

Personnel Involved in the Study

The following key Wildlife International, Ltd. personnd were involved in the conduct or management of this study:

1.
 2.
 3.
 4.

- 162 -

# Appendix 6

Report Amendment

1. Original Report: Title Page

> Amended Report: The amended report date was added. The total number of

> > pages was changed from 150 to 163

To indicate that the report was amended and note change in Reason:

pagination.

2. Original Report: Page 2

> Amended Report: The amended report date was added and new signatures and

> > dates were added.

Reason: To show the amended report date and to provide new

signatures and dates for the amended report.

3. Original Report: Page 3

> Amended Report: The audit dates for the amended report were added and a

> > new signature and date were added.

To show the amended report audit dates and Reason:

to provide a new signature and date for the

amended report.

4. Original Report: Page 4

> Amended Report: New signatures and dates were added.

To provide new signatures and dates for the amended report. Reason:

5. Original Report: Page 11

> Amended Report: The Table of Contents was updated to show the addition of

> > the Test Article Selection section in Appendix 4, renumber all appendices from Appendix 4 through the end of the report and added the Report Am endment appendix

(Appendix 6).

The Sponsor requested that the Test Article Selection section Reason:

be added to Appendix 4.

6. Original Report: Page 114

> Amended Report: Test Article Selection was added to Appendix 4. Reason:

The Sponsor requested that the Test Article Selection section be added to Appendix 4.

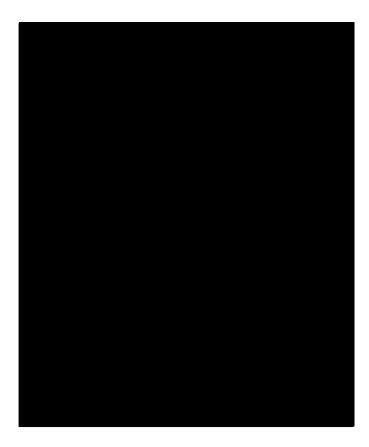
7. Original Report: Pages 114-150

> Amended Report: The Test Article Selection section was

> > added to Appendix 4, therefore all appendices thereafter were renumbered.

Reason: The Sponsor requested that the Test Article

Selection section be added to Appendix 4.


- 163 -

# Appendix 6

(continued)

# Report Amendment

# AMENDMENT SIGNATURES:



4-10-07

4/26/2007 Date

4/10/2007 Date